Compare commits

...

12 Commits

Author SHA1 Message Date
5e3747179f UI prototype 2025-01-15 23:39:33 +01:00
44e5bd423e start cases 2025-01-15 23:39:09 +01:00
03c93f4d8b force encoding 2025-01-15 23:38:50 +01:00
f9c4d3e2db add webserver 2025-01-15 23:38:39 +01:00
7224111a0b python package restructuring 2025-01-14 20:29:29 +01:00
0c022d4731 tuned prompt 2025-01-13 23:33:51 +01:00
a697f49698 whitespace 2025-01-13 23:33:22 +01:00
3218e7eb63 whitespace 2025-01-13 23:32:54 +01:00
ef789375c8 improved append file 2025-01-13 23:32:42 +01:00
7f0cb49156 refactoring 2025-01-13 22:39:32 +01:00
19870cdea8 try out some more models 2025-01-13 20:47:48 +01:00
677eb6d0ea switch for toolcalls 2025-01-12 21:16:42 +01:00
41 changed files with 4847 additions and 267 deletions

3
.gitignore vendored
View File

@@ -1,4 +1,5 @@
/model/*
*.prof
__pycache__
*.venv
*.venv
*.egg-info

2
.vscode/launch.json vendored
View File

@@ -15,7 +15,7 @@
"name": "PyDebug: __main__.py",
"type": "debugpy",
"request": "launch",
"program": "__main__.py",
"program": "chatbug/__main__.py",
"console": "integratedTerminal"
}
]

0
chatbug/__init__.py Normal file
View File

View File

@@ -1,6 +1,7 @@
print("running __main__.-py")
from llama import main
from chatbug.llama import main_func
if __name__ == "__main__":
main()
main_func()

37
chatbug/download_model.py Normal file
View File

@@ -0,0 +1,37 @@
from chatbug.inference import Inference
from chatbug.modelconfig import Modelconfig
def main():
# Model size: 3.21B params
Inference(Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True))
# Model size: 1.24B params
Inference(Modelconfig("unsloth/Llama-3.2-1B", load_in_8bit=True))
# Model size: 3.21B params
Inference(Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True))
# Model size: 4.65B params
Inference(Modelconfig("unsloth/llama-3-8b-bnb-4bit", load_in_4bit=True))
# Model size: 3.21B params
Inference(Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_4bit=True))
# Model size: 5.21B params
Inference(Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit", load_in_4bit=True))
# Model size: 4.46B params
Inference(Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit", load_in_4bit=True))
# Model size: 3.09B params
Inference(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True))
# Model size: 3.87B params
Inference(Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit", load_in_4bit=True))
if __name__ == "__main__":
main()

46
chatbug/file_append.py Normal file
View File

@@ -0,0 +1,46 @@
import os
def check_append_file(prompt: str) -> str:
if "@" in prompt:
parts = prompt.split(" ")
content = []
for part in parts:
if part.startswith("@"):
filename = part[1:]
try:
if os.path.exists(filename):
with open(filename, "r", encoding="utf-8") as f:
content.append("%s:'''\n%s'''" % (filename, f.read()))
except FileNotFoundError:
print(f"File '{filename}' not found.")
except Exception as e:
print("exception encountered %s", e)
content.append(prompt)
return "\n".join(content)
return prompt
if __name__ == "__main__":
exit() # not accidentally trigger it
# Create some sample files
with open("fmain.py", "w") as f:
f.write("# This is main.py\n")
with open("finference.py", "w") as f:
f.write("# This is inference.py\n")
# Test cases
test_prompts = [
"@fmain.py",
"@fmain.py @finference.py",
"@fnonexistent.py",
"@fmain.py @fnonexistent.py"
]
for prompt in test_prompts:
print(f"Testing prompt: {prompt}")
result = check_append_file(prompt)
print(f"Result: {result}")
print("-" * 20)

170
chatbug/generation_loop.py Normal file
View File

@@ -0,0 +1,170 @@
import time
import json
import random
from chatbug.tool_helper import tool_list, parse_and_execute_tool_call
from chatbug.inference import Inference, torch_reseed
from chatbug.file_append import check_append_file
def msg(role: str, content: str) -> dict:
return {"role": role, "content": content}
class Terminal:
def __init__(self, inference: Inference, systemmessage: dict):
self.inference = inference
self.messages:list[dict] = [systemmessage]
# these are meant to be overwritten by better ones
self.roleflip = msg("system", "keep going.")
self.summarize = msg("system", "summarize conversation")
self.summarize_user = msg("system", "please summarize conversation")
self.title_prompt = msg("system", "create a title for this conversation")
def append_generate_chat(self, input_text: str, role="user"):
t_start = time.time()
# generate AI response
if input_text != None:
self.messages.append({"role": role, "content": input_text})
inputs = self.inference.tokenize(self.messages, tokenize=True)
number_of_input_tokens = inputs.shape[1]
outputs, out_text = self.inference.generate(inputs)
# append result to message history
self.messages.append({"role": "assistant", "content": out_text})
print("")
time_taken = time.time() - t_start
number_of_tokens = len(outputs[0])
tokens_per_second = (number_of_tokens - number_of_input_tokens) / time_taken
print("generation took %.3fs (%d tokens, %.3f t/s)" % (time_taken, number_of_tokens, tokens_per_second))
# handle tool call and check if a tool call has happened.
tool_result = parse_and_execute_tool_call(out_text, tool_list)
if tool_result != None:
# tool call happened
tool_result = "<tool_response>%s</tool_response>" % tool_result
# depending on the chat template the tool response tags must or must not be passed. :(
self.append_generate_chat(tool_result, role="tool")
def join(self):
while True:
# print an input prompt to receive text or commands
input_text = input(">>> ")
print("")
input_text = check_append_file(input_text)
if input_text.startswith("!"):
self.append_generate_chat("<tool_response>%s</tool_response>" % input_text[1:], role="tool")
# append_generate_chat("%s" % input_text[1:], role="tool") # depending on the chat template the tool response tags must or must not be passed. :(
elif input_text.startswith("/clear"):
print("clearing chat history")
start_msg = self.messages[0]
self.message = [start_msg]
print("")
elif input_text.startswith("/history"):
history = self.inference.tokenize(self.messages, tokenize=False)
# history = tokenizer.apply_chat_template(self.message, return_tensors="pt", tokenize=False, add_generation_prompt=False)
print(history)
elif input_text.startswith("/undo"):
if len(self.messages) > 2:
print("undo latest prompt")
self.message = self.messages[:-2]
else:
print("cannot undo because there are not enough self.message on history.")
print("")
elif input_text.startswith("/regen"):
if len(self.messages) >= 2:
print("regenerating message (not working)")
self.messages = self.messages[:-1]
seed = random.randint(0, 2**32 - 1) # Generate a random seed
torch_reseed(seed)
self.append_generate_chat(None)
else:
print("cannot regenerate because there are not enough self.message on history.")
print("")
elif input_text.startswith("/more"):
self.append_generate_chat(None)
elif input_text.startswith("/file"):
filename = input_text[len("/file "):]
print("read '%s' for prompt:" % filename)
with open(filename, "r") as f:
content = f.read()
print(content)
self.append_generate_chat(content)
elif input_text.startswith("/auto"):
message_backup = self.messages
self.messages = [self.roleflip]
for m in self.message_backup:
role = m["role"]
content = m["content"]
if role == "user":
role = "assistant"
elif role == "assistant":
role = "user"
if role != "system":
self.message.append({"role": role, "content": content})
self.append_generate_chat(None) # will automatically advance the conversation as 'user'
last_message = self.messages[-1]
last_message["role"] = "user"
self.messages = message_backup + [last_message]
self.append_generate_chat(None) # 'regular' chatbot answer
elif input_text.startswith("/summarize"):
messages_temp = list(filter(lambda x: x["role"] != "system", self.messages))
messages_temp = [self.summarize] + messages_temp + [self.summarize_user] # copy dict in last instance
# messages_temp[-1]["role"] = "user"
input_ids = self.inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ")
generated_tokens, full_output = self.inference.generate(input_ids)
elif input_text.startswith("/title"):
messages_temp = list(filter(lambda x: x["role"] != "system", self.messages))
messages_temp = [self.title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance
messages_temp[-1]["role"] = "user"
input_ids = self.inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ")
generated_tokens, full_output = self.inference.generate(input_ids)
elif input_text.startswith("/save"):
with open("messages.json", "w") as f:
json.dump(self.messages, f, indent=4)
elif input_text.startswith("/load"):
with open("messages.json", "r") as f:
new_messages = json.load(f)
self.messages = [self.messages[0]] + new_messages[1:]
elif input_text.startswith("/help"):
print("!<prompt> answer as 'tool' in <tool_response> tags")
print("/clear clear chat history")
print("/undo undo latest prompt")
print("/regen regenerate the last message")
print("/more generate more additional information")
print("/file read prompt input from file")
print("/auto automatically advance conversation")
print("/summarize generate a summary of the chat")
print("/title generate a title of the chat")
print("/save write chat history to file")
print("/load load previously saved history")
print("/help print this message")
print("")
elif input_text.startswith("/"):
print("unknown command.")
else:
self.append_generate_chat(input_text)

View File

@@ -14,44 +14,52 @@ from transformers.cache_utils import (
)
import torch
import time
import utils
import re
import os
import chatbug.utils as utils
from chatbug.modelconfig import Modelconfig
torch.set_num_threads(os.cpu_count()) # Adjust this to the number of threads/cores you have
class Inference:
def __init__(self):
print("loading LLM...")
def __init__(self, modelconfig: Modelconfig):
print("loading LLM '%s'..." % modelconfig.model_name)
t_start = time.time()
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "unsloth/phi-4-unsloth-bnb-4bit" #too big
# model_name = "gpt2"
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
)
# quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4", # Recommended for better performance
# bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
# bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
# )
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# Load the model with quantization (optional)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
# device_map="auto", # Automatically places parts of the model on GPU/CPU
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
device_map="cuda", # Automatically places parts of the model on GPU/CPU
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
quantization_config=quantization_config_8bit
)
if modelconfig.bits_and_bytes_config != None:
self.model = AutoModelForCausalLM.from_pretrained(
modelconfig.model_name,
# device_map="auto", # Automatically places parts of the model on GPU/CPU
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
device_map="cuda", # Automatically places parts of the model on GPU/CPU
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
quantization_config=modelconfig.bits_and_bytes_config
)
else:
self.model = AutoModelForCausalLM.from_pretrained(
modelconfig.model_name,
device_map="cuda",
)
# print("apply optimization")
# self.model.generation_config.cache_implementation = "static"
@@ -59,25 +67,25 @@ class Inference:
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(modelconfig.model_name)
print("load took %.3fs" % (time.time() - t_start))
max_context_length = self.model.config.max_position_embeddings
self.max_context_length = self.model.config.max_position_embeddings
self.tokenizer.chat_template = utils.load_json_file("chat_template.json")
print("max_context_length is %d tokens." % (max_context_length))
print("max_context_length is %d tokens." % (self.max_context_length))
def generate(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
def generate(self, input_ids: torch.Tensor, print_stdout=True) -> tuple[torch.Tensor, str]:
with torch.inference_mode():
with torch.no_grad():
return self.generate_incremental_2(input_ids)
return self.generate_incremental_2(input_ids, print_stdout)
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
def generate_batch(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
outputs = self.model.generate(
input_ids, # **inputs, inputs["input_ids"]
max_new_tokens=500, # max_length=max_context_length,
@@ -90,11 +98,12 @@ class Inference:
# skip all input tokens and only output the additional generated part of the conversation
input_token_count = len(input_ids[0])
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
print(out_text)
if print_stdout:
print(out_text)
return outputs, out_text
def generate_incremental_2(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
def generate_incremental_2(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
generated_tokens = input_ids
past_key_values = DynamicCache()
@@ -126,12 +135,14 @@ class Inference:
# Decode and print the newly generated token (skip special tokens)
# out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
out_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
if print_stdout:
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
# if next_token.item() == self.tokenizer.eos_token_id:
if new_tokens[-1].item() == self.tokenizer.eos_token_id:
print("")
if print_stdout:
print("")
break
# n += 1
@@ -150,12 +161,12 @@ class Inference:
return generated_tokens, full_output
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
def generate_incremental(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
with torch.inference_mode():
return self._generate_incremental(input_ids)
return self._generate_incremental(input_ids, print_stdout)
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
def _generate_incremental(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
# Start with the initial input tokens
generated_tokens = input_ids # Initially, this is just the input tokens
@@ -169,7 +180,7 @@ class Inference:
while True:
# Call the model with the current tokens
outputs = self.model(
input_ids=generated_tokens,
input_ids=generated_tokens,
use_cache=True,
num_beams = 1
# past_key_values=past_key_values
@@ -183,11 +194,13 @@ class Inference:
# Decode and print the newly generated token (skip special tokens)
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
if print_stdout:
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
if next_token.item() == self.tokenizer.eos_token_id:
print("")
if print_stdout:
print("")
break
n += 1

View File

@@ -0,0 +1,76 @@
import time
import nvidia_smi
import torch
import gc
from chatbug.inference import Inference
from chatbug.modelconfig import Modelconfig
def empty_cuda():
while True:
gc.collect()
torch.cuda.empty_cache()
time.sleep(0.5)
vram = nvidia_smi.get_gpu_stats()["memory_used"]
print("vram: %d MB" % vram)
if vram < 200:
return
def profile_ex(model_conf: Modelconfig):
print("")
empty_cuda()
messages = [
{"role": "system", "content": "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user."},
{"role": "user", "content": "How do astronomers determine the original wavelength of light emitted by a celestial body at rest, which is necessary for measuring its speed using the Doppler effect?"},
]
gpu_stats_before = nvidia_smi.get_gpu_stats()
inference = Inference(model_conf)
gpu_stats_loaded = nvidia_smi.get_gpu_stats()
t_start = time.time()
input_ids = inference.tokenize(messages, tokenize=True)
generated_tokens, full_output = inference.generate_batch(input_ids, print_stdout=False)
t_end = time.time()
gpu_stats_after = nvidia_smi.get_gpu_stats()
took = t_end - t_start
tokens = len(generated_tokens[0])
tokens_per = tokens / took
vram_bulk = gpu_stats_loaded["memory_used"] - gpu_stats_before["memory_used"]
vram_top = gpu_stats_after["memory_used"] - gpu_stats_loaded["memory_used"]
print("model: %s" % model_conf.model_name)
print("tokens: %d tk" % tokens)
print("time: %.3f s" % took)
print("speed: %.3f tk/s" % tokens_per)
print("vram_bulk: %d MB" % vram_bulk)
print("vram_top: %d MB" % vram_top)
print("context: %d tk" % inference.max_context_length)
print("")
def profile(model_conf):
try:
profile_ex(model_conf)
except Exception as e:
print("exception: " + str(e))
pass
def main():
profile(Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True))
profile(Modelconfig("unsloth/Llama-3.2-1B"))
profile(Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True))
profile(Modelconfig("unsloth/llama-3-8b-bnb-4bit"))
# profile(Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True))
profile(Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit"))
profile(Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit"))
profile(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True))
profile(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True))
profile(Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit"))
if __name__ == "__main__":
main()

46
chatbug/llama.py Normal file
View File

@@ -0,0 +1,46 @@
import datetime
from chatbug.tool_helper import tool_list
from chatbug.tool_functions import register_dummy
from chatbug.inference import Inference
from chatbug.generation_loop import Terminal, msg
from chatbug import model_selection
register_dummy()
def initialize_config(inference: Inference) -> Terminal:
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions
system_prompt = "Hold a casual conversation with the user. Keep responses short at max 5 sentences and on point. Answer using markdown to the user. When providing code examples, avoid comments which provide no additional information. Do not summarize."
current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.")
append_toolcalls = False
if append_toolcalls:
systemmessage = msg("system", system_prompt + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list))
else:
systemmessage = msg("system", system_prompt + "\n" + current_date_and_time)
terminal = Terminal(inference, systemmessage)
# system message for role flip so the model automatically answers for the user
terminal.roleflip = msg("system", "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye.")
# system messages and user message to bring the model to summarize the entire conversation
terminal.summarize = msg("system", "Summarize the conversation as a single, cohesive paragraph. Avoid using any bullet points, numbers, or list formatting. Write in plain text with natural sentences that flow together seamlessly.")
terminal.summarize_user = msg("system", "Can you summarize the conversation?")
# system message to create a conversation title
terminal.title_prompt = msg("system", "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity.")
return terminal
def main_func():
inference = Inference(model_selection.get_model())
terminal = initialize_config(inference)
terminal.join()
if __name__ == "__main__":
main_func()

View File

@@ -0,0 +1,3 @@
from chatbug.matheval import ast
from chatbug.matheval import interpreter
from chatbug.matheval import lexer

View File

@@ -1,6 +1,5 @@
import math_lexer as lexer
from math_lexer import Token
from chatbug.matheval import lexer
from chatbug.matheval.lexer import Token
class Statement:

View File

@@ -1,10 +1,11 @@
import math_ast as ast
from sympy.parsing.sympy_parser import parse_expr
from sympy.core.numbers import Integer, One, Zero
from sympy import symbols, Eq, solveset, linsolve, nonlinsolve
from sympy.core.symbol import Symbol
from chatbug.matheval import ast
def interpret(statement: ast.Statement) -> str:

View File

@@ -0,0 +1,95 @@
from chatbug.modelconfig import Modelconfig
def get_model() -> Modelconfig:
# model: NousResearch/Hermes-3-Llama-3.2-3B
# tokens: 315 tk
# time: 94.360 s
# speed: 3.338 tk/s
# vram_bulk: 3622 MB
# vram_top: 80 MB
# context: 131072 tk
# model = Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True)
# model: unsloth/Llama-3.2-1B
# tokens: 589 tk
# time: 39.348 s
# speed: 14.969 tk/s
# vram_bulk: 4708 MB
# vram_top: 102 MB
# context: 131072 tk
# model = Modelconfig("unsloth/Llama-3.2-1B") # note, fast, but talks to itself. basically does not work.
# model: unsloth/Llama-3.2-3B-Instruct
# tokens: 285 tk
# time: 75.363 s
# speed: 3.782 tk/s
# vram_bulk: 3512 MB
# vram_top: 48 MB
# context: 131072 tk
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True)
# model: unsloth/llama-3-8b-bnb-4bit
# tokens: 435 tk
# time: 84.314 s
# speed: 5.159 tk/s
# vram_bulk: 5440 MB
# vram_top: 216 MB
# context: 8192 tk
# model = Modelconfig("unsloth/llama-3-8b-bnb-4bit")
# Model size: 3.21B params
# vram used: xxxxx MB
# speed xxxxx t/s
# working: DOES NOT LOAD
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True)
# model: unsloth/gemma-2-9b-it-bnb-4bit
# tokens: 154 tk
# time: 32.727 s
# speed: 4.706 tk/s
# vram_bulk: 6156 MB
# vram_top: 232 MB
# context: 8192 tk
# model = Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit")
# model: unsloth/Qwen2.5-7B-Instruct-bnb-4bit
# tokens: 120 tk
# time: 12.248 s
# speed: 9.798 tk/s
# vram_bulk: 5382 MB
# vram_top: 170 MB
# context: 32768 tk
model = Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit") # note, this works really good
# model: unsloth/Qwen2.5-3B-Instruct
# tokens: 112 tk
# time: 12.703 s
# speed: 8.816 tk/s
# vram_bulk: 2108 MB
# vram_top: 98 MB
# context: 32768 tk
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True)
# model: unsloth/Qwen2.5-3B-Instruct
# tokens: 118 tk
# time: 33.748 s
# speed: 3.497 tk/s
# vram_bulk: 3310 MB
# vram_top: 60 MB
# context: 32768 tk
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True)
# Model size: 3.87B params
# vram used: xxxxx MB
# speed xxxxx t/s
# error: requires the protobuf library but it was not found in your environment
# model = Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit")
return model

20
chatbug/modelconfig.py Normal file
View File

@@ -0,0 +1,20 @@
from transformers import BitsAndBytesConfig
import torch
class Modelconfig:
def __init__(self, model_name, bits_and_bytes_config=None, load_in_8bit=False, load_in_4bit=False):
self.model_name = model_name
if load_in_4bit:
assert bits_and_bytes_config == None
self.bits_and_bytes_config = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
)
elif load_in_8bit:
assert bits_and_bytes_config == None
self.bits_and_bytes_config = BitsAndBytesConfig(load_in_8bit=True)
else:
self.bits_and_bytes_config = bits_and_bytes_config

View File

@@ -1,10 +1,8 @@
import random
import datetime
from tool_helper import tool
import math_lexer
import math_ast
import math_interpreter
import utils
from chatbug.tool_helper import tool
import chatbug.matheval as matheval
import chatbug.utils as utils
# @tool
@@ -39,10 +37,10 @@ def math_evaluate(expression: str):
Args:
expression: A valid arithmetic expression (e.g., '2 + 3 * 4'). The expression must not contain '='."""
try:
tokens = math_lexer.tokenize(expression)
parser = math_ast.Parser()
tokens = matheval.lexer.tokenize(expression)
parser = matheval.ast.Parser()
ast = parser.parse(tokens)
return math_interpreter.interpret(ast)
return matheval.interpreter.interpret(ast)
except Exception as e:
utils.print_error("Tool call evaluation failed. - " + str(e))
return "Tool call evaluation failed."
@@ -58,10 +56,10 @@ Args:
expression = "solve " + " and ".join(equations) + " for " + " and ".join(variables)
print(expression)
tokens = math_lexer.tokenize(expression)
parser = math_ast.Parser()
tokens = matheval.lexer.tokenize(expression)
parser = ast.Parser()
ast = parser.parse(tokens)
return math_interpreter.interpret(ast)
return matheval.interpreter.interpret(ast)
except Exception as e:
utils.print_error("Tool call evaluation failed. - " + str(e))
return "Tool call evaluation failed."

View File

@@ -2,7 +2,7 @@
from typing import Callable, List, Optional
import json
import re
import utils
import chatbug.utils as utils
tool_list = []

0
chatbug/ui/__init__.py Normal file
View File

20
chatbug/ui/__main__.py Normal file
View File

@@ -0,0 +1,20 @@
from .server import start_server
from .serverwait import wait_for_server
from .ui import start_ui, _start_sandboxed
def start_ui():
svr = start_server(start_thread=False)
url = f"http://localhost:{svr.port}"
# wait_for_server(url)
# # start_ui(threaded=False)
# import webview
# w = webview.create_window('asdf', '../../web/index.html', min_size=(1200, 900), zoomable=True)
# webview.start(ssl=True)
if __name__ == "__main__":
start_ui()

3771
chatbug/ui/bottle.py Normal file

File diff suppressed because it is too large Load Diff

50
chatbug/ui/bottle_svr.py Normal file
View File

@@ -0,0 +1,50 @@
#tornado needs this or it does not run
import asyncio
try:
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
except AttributeError:
print("Probably running on linux")
from bottle import route, run, response, static_file, request, post
from .file_watchdog import FileWatchdog
class BottleServer:
def __init__(self, listen="0.0.0.0", port=8080, start_thread=True, root="web"):
self.root = root
self.port = port
self.listen = listen
self.wdt = FileWatchdog(self.root)
if start_thread:
import threading
self.thread = threading.Thread(target=self._run, args=())
self.thread.name = "BottleServerThread"
self.thread.daemon = True
self.thread.start()
else:
self._run()
def _home(self):
return static_file("index.html", root= self.root)
def _watchdog(self):
return str(self.wdt.time)
def _files(self, name):
if name.endswith(".vue"):
return static_file(name, root= self.root, mimetype="text/html")
return static_file(name, root= self.root)
def _run(self):
route('/')(self._home)
route('/watchdog')(self._watchdog)
route('/<name:path>')(self._files)
print(f"Starting server at {self.listen}:{self.port}")
run(host=self.listen, port=self.port, debug=False, threaded=True, quiet=True)

View File

@@ -0,0 +1,47 @@
import time
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
class MyHandler(FileSystemEventHandler):
def __init__(self, function):
self.function = function
def on_any_event(self, _event):
# Handle the event (e.g., file created, modified, deleted)
self.function()
class FileWatchdog:
def __init__(self, path):
self.path = path
self.time = 0
event_handler = MyHandler(lambda: self.event_handler())
self.observer = Observer()
self.observer.schedule(event_handler, path, recursive=True)
self.observer.start()
def event_handler(self):
#print("change detected")
self.time = time.time()
def stop(self):
self.observer.stop()
if __name__ == "__main__":
wdt = FileWatchdog("./web")
try:
while True:
time.sleep(1)
print(wdt.time)
except KeyboardInterrupt:
wdt.stop()

10
chatbug/ui/server.py Normal file
View File

@@ -0,0 +1,10 @@
from .bottle_svr import BottleServer
def start_server(start_thread=False):
print("server start")
return BottleServer(start_thread=start_thread, root="web")
if __name__ == "__main__":
start_server()

29
chatbug/ui/serverwait.py Normal file
View File

@@ -0,0 +1,29 @@
import time
import requests
import socket
def wait_for_server(url, timeout=10, retry_interval=0.5):
"""
Waits for a web server to become available by polling its URL.
"""
start_time = time.monotonic()
while time.monotonic() - start_time < timeout:
try:
# First, try a simple TCP connection to check if the port is open
hostname, port = url.split("//")[1].split(":")
port = int(port)
with socket.create_connection((hostname, port), timeout=retry_interval):
pass # If the connection succeeds, continue to the HTTP check
# Then, make an HTTP request to ensure the server is responding correctly
response = requests.get(url, timeout=retry_interval)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
return # Server is up and responding correctly
except (requests.exceptions.RequestException, socket.error) as e:
print(f"Server not yet available: {e}. Retrying in {retry_interval} seconds...")
time.sleep(retry_interval)
raise TimeoutError(f"Server at {url} did not become available within {timeout} seconds.")

30
chatbug/ui/ui.py Normal file
View File

@@ -0,0 +1,30 @@
import webview
from threading import Thread
def start_ui(threaded=False):
if threaded:
_start_threaded()
else:
_start_normal()
def _start_threaded():
t = Thread(target=start_ui, args=[False])
t.run()
def _start_normal():
webview.create_window('Geargenerator', 'http://localhost:8080', min_size=(1200, 900), zoomable=True)
webview.start()
def _start_sandboxed():
webview.create_window('Geargenerator', 'web_v2/geargenerator.html', min_size=(1200, 900), zoomable=True)
webview.start(ssl=True)
if __name__ == "__main__":
_start_sandboxed()
# start_ui(threaded=False)

175
llama.py
View File

@@ -1,175 +0,0 @@
import time
import random
from tool_helper import tool_list, parse_and_execute_tool_call
from tool_functions import register_dummy
from inference import Inference, torch_reseed
import datetime
messages = []
inference = None
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions
systemmessage = "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user."
# system message for role flip so the model automatically answers for the user
roleflip = {"role": "system", "content": "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye."}
# system messages and user message to bring the model to summarize the entire conversation
summarize = {"role": "system", "content": "Summarize the conversation as a single, cohesive paragraph. Avoid using any bullet points, numbers, or list formatting. Write in plain text with natural sentences that flow together seamlessly."}
summarize_user = {"role": "system", "content": "Can you summarize the conversation?"}
# system message to create a conversation title
title_prompt = {"role": "system", "content": "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity."}
register_dummy()
def append_generate_chat(input_text: str, role="user"):
t_start = time.time()
# generate AI response
if input_text != None:
messages.append({"role": role, "content": input_text})
inputs = inference.tokenize(messages, tokenize=True)
outputs, out_text = inference.generate(inputs)
# append result to message history
messages.append({"role": "assistant", "content": out_text})
print("")
print("generation took %.3fs (%d tokens)" % (time.time() - t_start, len(outputs[0])))
# handle tool call and check if a tool call has happened.
tool_result = parse_and_execute_tool_call(out_text, tool_list)
if tool_result != None:
# tool call happened
tool_result = "<tool_response>%s</tool_response>" % tool_result
# depending on the chat template the tool response tags must or must not be passed. :(
append_generate_chat(tool_result, role="tool")
def main():
global messages
global inference
inference = Inference()
current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.")
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list)}]
while True:
# print an input prompt to receive text or commands
input_text = input(">>> ")
print("")
if input_text.startswith("!"):
append_generate_chat("<tool_response>%s</tool_response>" % input_text[1:], role="tool")
# append_generate_chat("%s" % input_text[1:], role="tool") # depending on the chat template the tool response tags must or must not be passed. :(
elif input_text.startswith("/clear"):
print("clearing chat history")
start_msg = messages[0]
messages = [start_msg]
print("")
elif input_text.startswith("/history"):
history = inference.tokenize(messages, tokenize=False)
# history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
print(history)
elif input_text.startswith("/undo"):
if len(messages) > 2:
print("undo latest prompt")
messages = messages[:-2]
else:
print("cannot undo because there are not enough messages on history.")
print("")
elif input_text.startswith("/regen"):
if len(messages) >= 2:
print("regenerating message (not working)")
messages = messages[:-1]
seed = random.randint(0, 2**32 - 1) # Generate a random seed
torch_reseed(seed)
append_generate_chat(None)
else:
print("cannot regenerate because there are not enough messages on history.")
print("")
elif input_text.startswith("/more"):
append_generate_chat(None)
elif input_text.startswith("/file"):
filename = input_text[len("/file "):]
print("read '%s' for prompt:" % filename)
with open(filename, "r") as f:
content = f.read()
print(content)
append_generate_chat(content)
elif input_text.startswith("/auto"):
messages_backup = messages
messages = [roleflip]
for m in messages_backup:
role = m["role"]
content = m["content"]
if role == "user":
role = "assistant"
elif role == "assistant":
role = "user"
if role != "system":
messages.append({"role": role, "content": content})
append_generate_chat(None) # will automatically advance the conversation as 'user'
last_message = messages[-1]
last_message["role"] = "user"
messages = messages_backup + [last_message]
append_generate_chat(None) # 'regular' chatbot answer
elif input_text.startswith("/summarize"):
messages_temp = list(filter(lambda x: x["role"] != "system", messages))
messages_temp = [summarize] + messages_temp + [summarize_user] # copy dict in last instance
# messages_temp[-1]["role"] = "user"
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ")
generated_tokens, full_output = inference.generate(input_ids)
elif input_text.startswith("/title"):
messages_temp = list(filter(lambda x: x["role"] != "system", messages))
messages_temp = [title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance
messages_temp[-1]["role"] = "user"
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ")
generated_tokens, full_output = inference.generate(input_ids)
elif input_text.startswith("/help"):
print("!<prompt> answer as 'tool' in <tool_response> tags")
print("/clear clear chat history")
print("/undo undo latest prompt")
print("/regen regenerate the last message")
print("/more generate more additional information")
print("/file read prompt input from file")
print("/auto automatically advance conversation")
print("/summarize generate a summary of the chat")
print("/title generate a title of the chat")
print("/help print this message")
print("")
elif input_text.startswith("/"):
print("unknown command.")
else:
append_generate_chat(input_text)
if __name__ == "__main__":
main()

View File

@@ -1,3 +1,4 @@
transformers
accelerate
bitsandbytes
bitsandbytes
pytest

28
setup.py Normal file
View File

@@ -0,0 +1,28 @@
from setuptools import setup, find_packages
setup(
name='chatbug',
version='0.1.0',
description='A conversational AI chatbot',
author='Florin Tobler',
author_email='florin.tobler@hotmail.com',
packages=find_packages(exclude=["tests"]),
install_requires=[
'transformers',
'accelerate',
'bitsandbytes',
'pytest',
'pywebview',
],
entry_points={
'console_scripts': [
'chatbug=chatbug.llama:main_func',
# a^ b^ c^ d^
# a => the command line argument
# b => the package name
# c => the file name in the package (same as imports)
# d => the function to call
'chatbugui=chatbug.ui.__main__:start_ui',
],
},
)

View File

@@ -1 +0,0 @@
# empty

View File

@@ -1,32 +1,20 @@
import pytest
import tests.helper as helper
from tests import helper
inference = None
InferenceClass = None
Tensor = None
def prepare():
if InferenceClass == None:
test_import_inference_module_librarys()
if inference == None:
test_instantiate_inference_instance()
def test_import_inference_module_librarys():
import inference
import torch
global InferenceClass
global Tensor
InferenceClass = inference.Inference
Tensor = torch.Tensor
def test_instantiate_inference_instance():
if InferenceClass == None:
test_import_inference_module_librarys()
global inference
inference = InferenceClass()
global Tensor
if inference == None:
from torch import Tensor as _Tensor
from chatbug.inference import Inference
from chatbug.model_selection import get_model
inference = Inference(get_model())
Tensor = _Tensor
def test_tool_header_generation():

View File

@@ -1,6 +1,6 @@
import pytest
import tool_helper
import tests.helper as helper
import chatbug.tool_helper as tool_helper
from tests import helper

View File

@@ -1,6 +1,6 @@
import pytest
import tool_functions
import chatbug.tool_functions as tool_functions
from tests import helper
def test_math_evaluate_1():
@@ -28,6 +28,13 @@ def test_math_evaluate_5():
result = tool_functions.math_evaluate("sin(pi/2) + cos(0)")
assert result == "sin(pi/2) + cos(0) = 2"
def test_math_evaluate_solve_a():
result = tool_functions.math_evaluate("solve 240=x*r+x*r^2+x*r^3+s and r=1.618 and s=5 for x, r, s")
assert result == "Solved equation system 240 = r**3*x + r**2*x + r*x + s, r = 1.61800000000000 and s = 5 for x=27.7393327937747=~27.739, r=1.61800000000000=~1.618 and s=5.00000000000000=~5.000."
def test_math_evaluate_solve_b():
result = tool_functions.math_evaluate("solve 250=x+x*r+s and r=1.618 and s=0 for x, r, s")
assert result == "Solved equation system 250 = r*x + s + x, r = 1.61800000000000 and s = 0 for x=95.4927425515661=~95.493, r=1.61800000000000=~1.618 and s=0."
@@ -54,4 +61,3 @@ def test_math_solver_3b():
def test_math_solver_4():
result = tool_functions.math_evaluate("solve 2*x**3 + 3*y = 7 and x - y = 1 for x, y")
assert result == "Solved equation system 2*x**3 + 3*y = 7 and x - y = 1 for x=~1.421 and y=~0.421."

View File

@@ -1,7 +1,8 @@
import pytest
import tool_helper
from chatbug import tool_helper
from unittest import mock
import tests.helper as helper
from tests import helper
import re
@@ -40,34 +41,34 @@ def test_match_and_extract_matching3_with_newline():
def test_string_malformed_faulty():
with mock.patch("utils.print_error") as print_error_mock:
with mock.patch("chatbug.utils.print_error") as print_error_mock:
result = tool_helper._execute_tool_call_str("{json_content}", [])
assert result == None
print_error_mock.assert_called_once() # this will check if the mocked function on the context was called.
def test_tool_call_json_1():
with mock.patch("utils.print_error") as print_error_mock:
with mock.patch("chatbug.utils.print_error") as print_error_mock:
result = tool_helper._execute_tool_call_json({"name": "tool_dummy", "arguments": {"a": 1, "b": "zwei"}}, [helper.tool_dummy, helper.tool_dummy2])
assert result == "result_1_zwei"
assert print_error_mock.call_count == 0
def test_tool_call_json_2():
with mock.patch("utils.print_error") as print_error_mock:
with mock.patch("chatbug.utils.print_error") as print_error_mock:
result = tool_helper._execute_tool_call_json({"name": "tool_dummy2", "arguments": {"text": "some_text"}}, [helper.tool_dummy, helper.tool_dummy2])
assert result == "SOME_TEXT"
assert print_error_mock.call_count == 0
def test_tool_call_json_non_existing_call_check():
with mock.patch("utils.print_error") as print_error_mock:
with mock.patch("chatbug.utils.print_error") as print_error_mock:
result = tool_helper._execute_tool_call_json({"name": "tool_dummy_which_is_not_existing", "arguments": {"text": "some_text"}}, [helper.tool_dummy, helper.tool_dummy2])
assert result == None
assert print_error_mock.call_count == 1 # this will check if the mocked function on the context was called.
def test_tool_call_json_wrong_arguments_check():
with mock.patch("utils.print_error") as print_error_mock:
with mock.patch("chatbug.utils.print_error") as print_error_mock:
result = tool_helper._execute_tool_call_json({"name": "tool_dummy", "arguments": {"a": "must_be_an_int_but_is_string", "b": "zwei"}}, [helper.tool_dummy, helper.tool_dummy2])
assert result == None
assert print_error_mock.call_count == 1 # this will check if the mocked function on the context was called.
@@ -75,7 +76,6 @@ def test_tool_call_json_wrong_arguments_check():
def test_regex_multiline():
import re
pattern = r"<start>(.*)</end>"
# The text to search (spanning multiple lines)

61
web/index.html Normal file
View File

@@ -0,0 +1,61 @@
<!DOCTYPE html>
<html lang="en">
<head>
<!-- <script defer src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"></script> -->
<link rel="stylesheet" href="stylesheet.css">
<script src="alpine.min.js"></script>
<script src="main.js"></script>
<script src="watchdog.js"></script>
</head>
<body>
<div class="sidebar">
<h1>Chatbug 🪲</h1>
<div class="button">🐛 New Chat</div>
<div class="title">Today</div>
<div class="button">Building Web UI with Bottle & Alpine.js</div>
<div class="button">Coding in python</div>
<div class="title">Last Week</div>
<div class="title">Older</div>
</div>
<div class="mainarea">
<!-- <h1 x-data="{ message: 'I ❤️ Alpine' }" x-text="message"></h1> -->
<div class="message">
<div class="bubble">Hello world</div>
</div>
<div class="response">
<div class="">Hello! Nice to meet you. What's up?</div>
</div>
<div class="message">
<div class="bubble">ah, just holding an example conversation with you</div>
</div>
<div class="response">
<div class="">Got it! Fun stuff. What kind of projects are you working on these days?</div>
</div>
<div class="message">
<div class="bubble">LLM chatbot named chatbug 🪲</div>
</div>
<div class="response">
<div class="">Cool name! Chatbug sounds like a friendly one. How's it going?</div>
</div>
<div class="message">
<div class="bubble">making a web ui with bottle and alpinejs</div>
</div>
<div class="input">
<!-- toolbutton for tool submenu, normally hidden unless pressed -->
<div class="button">+</div>
<div class="tool list" style="display:none">
<div class="tool button">attach file</div>
<div class="tool button">regenerate</div>
<div class="tool button">undo</div>
</div>
<input type="text">
<!-- send -->
<div class="button"></div>
</div>
</div>
</body>
</html>

25
web/main.js Normal file
View File

@@ -0,0 +1,25 @@
// import {createApp, ref, reactive} from 'vue';
// const app = createApp({
// data() {
// let msg = ref("hello world")
// try {
// msg.value = "" + pywebview.api
// } catch (e) {
// msg.value = "did not invoke " + e
// }
// window.msg = msg
// return {
// message: msg
// };
// }
// });
// app.mount('#app');

117
web/stylesheet.css Normal file
View File

@@ -0,0 +1,117 @@
body {
background-color: black;
color: white;
font-family: Arial, Helvetica, sans-serif;
margin: 0px;
height: 100%;
}
.sidebar {
width: 250px;
background-color: #2a262a;
float: left;
height: 100%;
position: absolute;
}
.sidebar h1 {
margin: 20px;
}
.sidebar .title {
font-size: 8pt;
margin: 20px;
margin-top: 30px;
margin-bottom: 10px;
}
.sidebar .button {
margin-left: 10px;
margin-right: 10px;
padding: 10px;
border-radius: 10px;
}
.sidebar .button:hover {
background-color: #423a42;
}
.mainarea {
margin-left: 260px;
height: 100%;
position: absolute;
right: 0;
left: 0;
}
.message {
display: flex;
margin-left: 40px;
margin-right: 10px;
}
.bubble {
padding: 10px;
border-radius: 10px;
background-color: #416146;
margin-left: auto;
float: right;
position: relative;
}
.response {
display: flex;
margin: 30px;
position: relative;
}
.response::before {
content: '🪲';
position: absolute;
top: -4px;
left: -30px;
}
.input {
display: flex;
justify-content: space-between;
align-items: center;
padding: 10px;
background-color: #2a262a;
border-radius: 10px;
width: 70%;
margin: auto;
position: absolute;
bottom: 40px;
}
.tool.list {
display: none;
background-color: #fff;
border: 1px solid #ccc;
position: absolute;
top: 100%;
left: 0;
z-index: 1;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}
.tool.button {
cursor: pointer;
padding: 5px 10px;
margin: 5px;
}
.input input {
flex-grow: 1;
padding: 10px;
border: 0px solid #ccc;
background: none;
color: white;
}
.input input:focus {
outline: 0px solid black; /* Custom focus outline */
}

67
web/watchdog.js Normal file
View File

@@ -0,0 +1,67 @@
wdt = {
last_wdt_time: 0,
watchdog_counter: 0
}
pollFileChange = () => {
setTimeout(() => {
wdt.watchdog_counter++
console.log(wdt.watchdog_counter)
if (wdt.watchdog_counter > 20) {
return
}
ajax({
type: "GET",
url: "/watchdog",
success: (data) => {
var time = Number(data)
if (wdt.last_wdt_time == 0) {
wdt.last_wdt_time = time
pollFileChange()
} else if (time > wdt.last_wdt_time) {
location.reload();
} else {
pollFileChange()
}
},
})
}, 10000)
}
function ajax(setting) {
if (typeof(shutdown) !== 'undefined') return
var request = new XMLHttpRequest();
request.open(setting.type, setting.url, true);
request.setRequestHeader('Content-Type', setting.dataType)
request.onload = function(data) {
if (typeof(shutdown) !== 'undefined') return
if (this.status >= 200 && this.status < 400) {
if (setting.success) {
setting.success(this.response)
}
} else {
if (setting.error) {
setting.error(this.response)
}
}
}
request.onerror = function(data) {
if (typeof(shutdown) !== 'undefined') return
if (setting.error) {
setting.error(data)
}
}
if (setting.data) {
request.send(setting.data)
} else {
request.send()
}
}
pollFileChange()