try out some more models
This commit is contained in:
37
download_model.py
Normal file
37
download_model.py
Normal file
@@ -0,0 +1,37 @@
|
||||
|
||||
|
||||
from inference import Inference
|
||||
from modelconfig import Modelconfig
|
||||
|
||||
|
||||
def main():
|
||||
# Model size: 3.21B params
|
||||
Inference(Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True))
|
||||
|
||||
# Model size: 1.24B params
|
||||
Inference(Modelconfig("unsloth/Llama-3.2-1B", load_in_8bit=True))
|
||||
|
||||
# Model size: 3.21B params
|
||||
Inference(Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True))
|
||||
|
||||
# Model size: 4.65B params
|
||||
Inference(Modelconfig("unsloth/llama-3-8b-bnb-4bit", load_in_4bit=True))
|
||||
|
||||
# Model size: 3.21B params
|
||||
Inference(Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_4bit=True))
|
||||
|
||||
# Model size: 5.21B params
|
||||
Inference(Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit", load_in_4bit=True))
|
||||
|
||||
# Model size: 4.46B params
|
||||
Inference(Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit", load_in_4bit=True))
|
||||
|
||||
# Model size: 3.09B params
|
||||
Inference(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True))
|
||||
|
||||
# Model size: 3.87B params
|
||||
Inference(Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit", load_in_4bit=True))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
79
inference.py
79
inference.py
@@ -17,41 +17,49 @@ import time
|
||||
import utils
|
||||
import re
|
||||
import os
|
||||
from modelconfig import Modelconfig
|
||||
|
||||
torch.set_num_threads(os.cpu_count()) # Adjust this to the number of threads/cores you have
|
||||
|
||||
|
||||
class Inference:
|
||||
def __init__(self):
|
||||
print("loading LLM...")
|
||||
def __init__(self, modelconfig: Modelconfig):
|
||||
print("loading LLM '%s'..." % modelconfig.model_name)
|
||||
t_start = time.time()
|
||||
|
||||
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
# model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
# model_name = "unsloth/phi-4-unsloth-bnb-4bit" #too big
|
||||
# model_name = "gpt2"
|
||||
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
||||
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
||||
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
|
||||
|
||||
|
||||
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4", # Recommended for better performance
|
||||
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
|
||||
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
|
||||
)
|
||||
# quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
|
||||
# load_in_4bit=True,
|
||||
# bnb_4bit_quant_type="nf4", # Recommended for better performance
|
||||
# bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
|
||||
# bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
|
||||
# )
|
||||
|
||||
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
|
||||
# quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
# Load the model with quantization (optional)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
# device_map="auto", # Automatically places parts of the model on GPU/CPU
|
||||
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
|
||||
quantization_config=quantization_config_8bit
|
||||
)
|
||||
if modelconfig.bits_and_bytes_config != None:
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
modelconfig.model_name,
|
||||
# device_map="auto", # Automatically places parts of the model on GPU/CPU
|
||||
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
|
||||
quantization_config=modelconfig.bits_and_bytes_config
|
||||
)
|
||||
else:
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
modelconfig.model_name,
|
||||
device_map="cuda",
|
||||
)
|
||||
|
||||
# print("apply optimization")
|
||||
# self.model.generation_config.cache_implementation = "static"
|
||||
@@ -59,25 +67,25 @@ class Inference:
|
||||
|
||||
|
||||
# Load tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(modelconfig.model_name)
|
||||
|
||||
print("load took %.3fs" % (time.time() - t_start))
|
||||
|
||||
max_context_length = self.model.config.max_position_embeddings
|
||||
self.max_context_length = self.model.config.max_position_embeddings
|
||||
|
||||
|
||||
self.tokenizer.chat_template = utils.load_json_file("chat_template.json")
|
||||
|
||||
print("max_context_length is %d tokens." % (max_context_length))
|
||||
print("max_context_length is %d tokens." % (self.max_context_length))
|
||||
|
||||
|
||||
def generate(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
def generate(self, input_ids: torch.Tensor, print_stdout=True) -> tuple[torch.Tensor, str]:
|
||||
with torch.inference_mode():
|
||||
with torch.no_grad():
|
||||
return self.generate_incremental_2(input_ids)
|
||||
return self.generate_incremental_2(input_ids, print_stdout)
|
||||
|
||||
|
||||
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
def generate_batch(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
|
||||
outputs = self.model.generate(
|
||||
input_ids, # **inputs, inputs["input_ids"]
|
||||
max_new_tokens=500, # max_length=max_context_length,
|
||||
@@ -90,11 +98,12 @@ class Inference:
|
||||
# skip all input tokens and only output the additional generated part of the conversation
|
||||
input_token_count = len(input_ids[0])
|
||||
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
|
||||
print(out_text)
|
||||
if print_stdout:
|
||||
print(out_text)
|
||||
return outputs, out_text
|
||||
|
||||
|
||||
def generate_incremental_2(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
def generate_incremental_2(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
|
||||
generated_tokens = input_ids
|
||||
|
||||
past_key_values = DynamicCache()
|
||||
@@ -126,12 +135,14 @@ class Inference:
|
||||
# Decode and print the newly generated token (skip special tokens)
|
||||
# out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
|
||||
out_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
||||
print(out_text, end="", flush=True) # Print without newline
|
||||
if print_stdout:
|
||||
print(out_text, end="", flush=True) # Print without newline
|
||||
|
||||
# Check if the generated token is the end-of-sequence token
|
||||
# if next_token.item() == self.tokenizer.eos_token_id:
|
||||
if new_tokens[-1].item() == self.tokenizer.eos_token_id:
|
||||
print("")
|
||||
if print_stdout:
|
||||
print("")
|
||||
break
|
||||
|
||||
# n += 1
|
||||
@@ -150,12 +161,12 @@ class Inference:
|
||||
return generated_tokens, full_output
|
||||
|
||||
|
||||
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
def generate_incremental(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
|
||||
with torch.inference_mode():
|
||||
return self._generate_incremental(input_ids)
|
||||
return self._generate_incremental(input_ids, print_stdout)
|
||||
|
||||
|
||||
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
def _generate_incremental(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
|
||||
# Start with the initial input tokens
|
||||
generated_tokens = input_ids # Initially, this is just the input tokens
|
||||
|
||||
@@ -183,11 +194,13 @@ class Inference:
|
||||
|
||||
# Decode and print the newly generated token (skip special tokens)
|
||||
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
|
||||
print(out_text, end="", flush=True) # Print without newline
|
||||
if print_stdout:
|
||||
print(out_text, end="", flush=True) # Print without newline
|
||||
|
||||
# Check if the generated token is the end-of-sequence token
|
||||
if next_token.item() == self.tokenizer.eos_token_id:
|
||||
print("")
|
||||
if print_stdout:
|
||||
print("")
|
||||
break
|
||||
|
||||
n += 1
|
||||
|
76
inference_profile_test.py
Normal file
76
inference_profile_test.py
Normal file
@@ -0,0 +1,76 @@
|
||||
from inference import Inference
|
||||
from modelconfig import Modelconfig
|
||||
import time
|
||||
import nvidia_smi
|
||||
import torch
|
||||
import gc
|
||||
|
||||
|
||||
def empty_cuda():
|
||||
while True:
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
time.sleep(0.5)
|
||||
vram = nvidia_smi.get_gpu_stats()["memory_used"]
|
||||
print("vram: %d MB" % vram)
|
||||
if vram < 200:
|
||||
return
|
||||
|
||||
|
||||
def profile_ex(model_conf: Modelconfig):
|
||||
print("")
|
||||
empty_cuda()
|
||||
messages = [
|
||||
{"role": "system", "content": "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user."},
|
||||
{"role": "user", "content": "How do astronomers determine the original wavelength of light emitted by a celestial body at rest, which is necessary for measuring its speed using the Doppler effect?"},
|
||||
]
|
||||
|
||||
gpu_stats_before = nvidia_smi.get_gpu_stats()
|
||||
inference = Inference(model_conf)
|
||||
|
||||
gpu_stats_loaded = nvidia_smi.get_gpu_stats()
|
||||
t_start = time.time()
|
||||
input_ids = inference.tokenize(messages, tokenize=True)
|
||||
generated_tokens, full_output = inference.generate_batch(input_ids, print_stdout=False)
|
||||
t_end = time.time()
|
||||
gpu_stats_after = nvidia_smi.get_gpu_stats()
|
||||
|
||||
took = t_end - t_start
|
||||
tokens = len(generated_tokens[0])
|
||||
tokens_per = tokens / took
|
||||
vram_bulk = gpu_stats_loaded["memory_used"] - gpu_stats_before["memory_used"]
|
||||
vram_top = gpu_stats_after["memory_used"] - gpu_stats_loaded["memory_used"]
|
||||
print("model: %s" % model_conf.model_name)
|
||||
print("tokens: %d tk" % tokens)
|
||||
print("time: %.3f s" % took)
|
||||
print("speed: %.3f tk/s" % tokens_per)
|
||||
print("vram_bulk: %d MB" % vram_bulk)
|
||||
print("vram_top: %d MB" % vram_top)
|
||||
print("context: %d tk" % inference.max_context_length)
|
||||
print("")
|
||||
|
||||
|
||||
def profile(model_conf):
|
||||
try:
|
||||
profile_ex(model_conf)
|
||||
except Exception as e:
|
||||
print("exception: " + str(e))
|
||||
pass
|
||||
|
||||
|
||||
def main():
|
||||
profile(Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True))
|
||||
profile(Modelconfig("unsloth/Llama-3.2-1B"))
|
||||
profile(Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True))
|
||||
profile(Modelconfig("unsloth/llama-3-8b-bnb-4bit"))
|
||||
# profile(Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True))
|
||||
profile(Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit"))
|
||||
profile(Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit"))
|
||||
profile(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True))
|
||||
profile(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True))
|
||||
profile(Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit"))
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
123
llama.py
123
llama.py
@@ -4,7 +4,7 @@ from tool_helper import tool_list, parse_and_execute_tool_call
|
||||
from tool_functions import register_dummy
|
||||
from inference import Inference, torch_reseed
|
||||
import datetime
|
||||
|
||||
from modelconfig import Modelconfig
|
||||
|
||||
|
||||
messages = []
|
||||
@@ -12,6 +12,7 @@ inference = None
|
||||
|
||||
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions
|
||||
systemmessage = "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user."
|
||||
systemmessage = "Hold a casual conversation with the user. Answer using markdown to the user."
|
||||
|
||||
# system message for role flip so the model automatically answers for the user
|
||||
roleflip = {"role": "system", "content": "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye."}
|
||||
@@ -23,7 +24,7 @@ summarize_user = {"role": "system", "content": "Can you summarize the conversati
|
||||
# system message to create a conversation title
|
||||
title_prompt = {"role": "system", "content": "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity."}
|
||||
|
||||
append_toolcalls = True
|
||||
append_toolcalls = False
|
||||
|
||||
register_dummy()
|
||||
|
||||
@@ -38,6 +39,7 @@ def append_generate_chat(input_text: str, role="user"):
|
||||
messages.append({"role": role, "content": input_text})
|
||||
|
||||
inputs = inference.tokenize(messages, tokenize=True)
|
||||
number_of_input_tokens = inputs.shape[1]
|
||||
|
||||
outputs, out_text = inference.generate(inputs)
|
||||
|
||||
@@ -45,7 +47,10 @@ def append_generate_chat(input_text: str, role="user"):
|
||||
messages.append({"role": "assistant", "content": out_text})
|
||||
|
||||
print("")
|
||||
print("generation took %.3fs (%d tokens)" % (time.time() - t_start, len(outputs[0])))
|
||||
time_taken = time.time() - t_start
|
||||
number_of_tokens = len(outputs[0])
|
||||
tokens_per_second = (number_of_tokens - number_of_input_tokens) / time_taken
|
||||
print("generation took %.3fs (%d tokens, %.3f t/s)" % (time_taken, number_of_tokens, tokens_per_second))
|
||||
|
||||
# handle tool call and check if a tool call has happened.
|
||||
tool_result = parse_and_execute_tool_call(out_text, tool_list)
|
||||
@@ -56,20 +61,10 @@ def append_generate_chat(input_text: str, role="user"):
|
||||
append_generate_chat(tool_result, role="tool")
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
def terminal_generation_loop():
|
||||
global messages
|
||||
global inference
|
||||
|
||||
inference = Inference()
|
||||
|
||||
current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.")
|
||||
if append_toolcalls:
|
||||
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list)}]
|
||||
else:
|
||||
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time}]
|
||||
|
||||
while True:
|
||||
# print an input prompt to receive text or commands
|
||||
input_text = input(">>> ")
|
||||
@@ -173,6 +168,106 @@ def main():
|
||||
append_generate_chat(input_text)
|
||||
|
||||
|
||||
def main():
|
||||
global messages
|
||||
global inference
|
||||
|
||||
# model: NousResearch/Hermes-3-Llama-3.2-3B
|
||||
# tokens: 315 tk
|
||||
# time: 94.360 s
|
||||
# speed: 3.338 tk/s
|
||||
# vram_bulk: 3622 MB
|
||||
# vram_top: 80 MB
|
||||
# context: 131072 tk
|
||||
# model = Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True)
|
||||
|
||||
# model: unsloth/Llama-3.2-1B
|
||||
# tokens: 589 tk
|
||||
# time: 39.348 s
|
||||
# speed: 14.969 tk/s
|
||||
# vram_bulk: 4708 MB
|
||||
# vram_top: 102 MB
|
||||
# context: 131072 tk
|
||||
# model = Modelconfig("unsloth/Llama-3.2-1B") # note, fast, but talks to itself. basically does not work.
|
||||
|
||||
# model: unsloth/Llama-3.2-3B-Instruct
|
||||
# tokens: 285 tk
|
||||
# time: 75.363 s
|
||||
# speed: 3.782 tk/s
|
||||
# vram_bulk: 3512 MB
|
||||
# vram_top: 48 MB
|
||||
# context: 131072 tk
|
||||
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True)
|
||||
|
||||
# model: unsloth/llama-3-8b-bnb-4bit
|
||||
# tokens: 435 tk
|
||||
# time: 84.314 s
|
||||
# speed: 5.159 tk/s
|
||||
# vram_bulk: 5440 MB
|
||||
# vram_top: 216 MB
|
||||
# context: 8192 tk
|
||||
# model = Modelconfig("unsloth/llama-3-8b-bnb-4bit")
|
||||
|
||||
# Model size: 3.21B params
|
||||
# vram used: xxxxx MB
|
||||
# speed xxxxx t/s
|
||||
# working: DOES NOT LOAD
|
||||
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True)
|
||||
|
||||
# model: unsloth/gemma-2-9b-it-bnb-4bit
|
||||
# tokens: 154 tk
|
||||
# time: 32.727 s
|
||||
# speed: 4.706 tk/s
|
||||
# vram_bulk: 6156 MB
|
||||
# vram_top: 232 MB
|
||||
# context: 8192 tk
|
||||
# model = Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit")
|
||||
|
||||
# model: unsloth/Qwen2.5-7B-Instruct-bnb-4bit
|
||||
# tokens: 120 tk
|
||||
# time: 12.248 s
|
||||
# speed: 9.798 tk/s
|
||||
# vram_bulk: 5382 MB
|
||||
# vram_top: 170 MB
|
||||
# context: 32768 tk
|
||||
model = Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit") # note, this works really good
|
||||
|
||||
# model: unsloth/Qwen2.5-3B-Instruct
|
||||
# tokens: 112 tk
|
||||
# time: 12.703 s
|
||||
# speed: 8.816 tk/s
|
||||
# vram_bulk: 2108 MB
|
||||
# vram_top: 98 MB
|
||||
# context: 32768 tk
|
||||
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True)
|
||||
|
||||
# model: unsloth/Qwen2.5-3B-Instruct
|
||||
# tokens: 118 tk
|
||||
# time: 33.748 s
|
||||
# speed: 3.497 tk/s
|
||||
# vram_bulk: 3310 MB
|
||||
# vram_top: 60 MB
|
||||
# context: 32768 tk
|
||||
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True)
|
||||
|
||||
# Model size: 3.87B params
|
||||
# vram used: xxxxx MB
|
||||
# speed xxxxx t/s
|
||||
# error: requires the protobuf library but it was not found in your environment
|
||||
# model = Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit")
|
||||
|
||||
|
||||
inference = Inference(model)
|
||||
|
||||
current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.")
|
||||
if append_toolcalls:
|
||||
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list)}]
|
||||
else:
|
||||
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time}]
|
||||
|
||||
terminal_generation_loop()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
20
modelconfig.py
Normal file
20
modelconfig.py
Normal file
@@ -0,0 +1,20 @@
|
||||
|
||||
from transformers import BitsAndBytesConfig
|
||||
import torch
|
||||
|
||||
class Modelconfig:
|
||||
def __init__(self, model_name, bits_and_bytes_config=None, load_in_8bit=False, load_in_4bit=False):
|
||||
self.model_name = model_name
|
||||
if load_in_4bit:
|
||||
assert bits_and_bytes_config == None
|
||||
self.bits_and_bytes_config = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4", # Recommended for better performance
|
||||
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
|
||||
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
|
||||
)
|
||||
elif load_in_8bit:
|
||||
assert bits_and_bytes_config == None
|
||||
self.bits_and_bytes_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
else:
|
||||
self.bits_and_bytes_config = bits_and_bytes_config
|
Reference in New Issue
Block a user