4 changed files with 305 additions and 258 deletions
@ -0,0 +1,181 @@ |
|||
import time |
|||
import json |
|||
import random |
|||
from tool_helper import tool_list, parse_and_execute_tool_call |
|||
from inference import Inference, torch_reseed |
|||
|
|||
|
|||
def check_append_file(prompt: str) -> str: |
|||
if prompt.startswith("@"): |
|||
prompt = prompt[1:] # Remove the '@' |
|||
filename = prompt.split(" ")[0] |
|||
try: |
|||
with open(filename, "r") as f: |
|||
content = f.read() |
|||
return "'''%s'''\n\n%s" % (content, prompt) |
|||
except: |
|||
print(f"File '{filename}' not found.") |
|||
return prompt |
|||
|
|||
|
|||
def msg(role: str, content: str) -> dict: |
|||
return {"role": role, "content": content} |
|||
|
|||
|
|||
class Terminal: |
|||
|
|||
def __init__(self, inference: Inference, systemmessage: dict): |
|||
self.inference = inference |
|||
self.messages:list[dict] = [systemmessage] |
|||
|
|||
# these are meant to be overwritten by better ones |
|||
self.roleflip = msg("system", "keep going.") |
|||
self.summarize = msg("system", "summarize conversation") |
|||
self.summarize_user = msg("system", "please summarize conversation") |
|||
self.title_prompt = msg("system", "create a title for this conversation") |
|||
|
|||
def append_generate_chat(self, input_text: str, role="user"): |
|||
t_start = time.time() |
|||
|
|||
# generate AI response |
|||
if input_text != None: |
|||
self.messages.append({"role": role, "content": input_text}) |
|||
|
|||
inputs = self.inference.tokenize(self.messages, tokenize=True) |
|||
number_of_input_tokens = inputs.shape[1] |
|||
|
|||
outputs, out_text = self.inference.generate(inputs) |
|||
|
|||
# append result to message history |
|||
self.messages.append({"role": "assistant", "content": out_text}) |
|||
|
|||
print("") |
|||
time_taken = time.time() - t_start |
|||
number_of_tokens = len(outputs[0]) |
|||
tokens_per_second = (number_of_tokens - number_of_input_tokens) / time_taken |
|||
print("generation took %.3fs (%d tokens, %.3f t/s)" % (time_taken, number_of_tokens, tokens_per_second)) |
|||
|
|||
# handle tool call and check if a tool call has happened. |
|||
tool_result = parse_and_execute_tool_call(out_text, tool_list) |
|||
if tool_result != None: |
|||
# tool call happened |
|||
tool_result = "<tool_response>%s</tool_response>" % tool_result |
|||
# depending on the chat template the tool response tags must or must not be passed. :( |
|||
self.append_generate_chat(tool_result, role="tool") |
|||
|
|||
def join(self): |
|||
|
|||
while True: |
|||
# print an input prompt to receive text or commands |
|||
input_text = input(">>> ") |
|||
print("") |
|||
|
|||
input_text = check_append_file(input_text) |
|||
|
|||
|
|||
if input_text.startswith("!"): |
|||
self.append_generate_chat("<tool_response>%s</tool_response>" % input_text[1:], role="tool") |
|||
# append_generate_chat("%s" % input_text[1:], role="tool") # depending on the chat template the tool response tags must or must not be passed. :( |
|||
|
|||
elif input_text.startswith("/clear"): |
|||
print("clearing chat history") |
|||
start_msg = self.messages[0] |
|||
self.message = [start_msg] |
|||
print("") |
|||
|
|||
elif input_text.startswith("/history"): |
|||
history = self.inference.tokenize(self.message, tokenize=False) |
|||
# history = tokenizer.apply_chat_template(self.message, return_tensors="pt", tokenize=False, add_generation_prompt=False) |
|||
print(history) |
|||
|
|||
elif input_text.startswith("/undo"): |
|||
if len(self.message) > 2: |
|||
print("undo latest prompt") |
|||
self.message = self.message[:-2] |
|||
else: |
|||
print("cannot undo because there are not enough self.message on history.") |
|||
print("") |
|||
|
|||
elif input_text.startswith("/regen"): |
|||
if len(self.message) >= 2: |
|||
print("regenerating message (not working)") |
|||
self.message = self.message[:-1] |
|||
seed = random.randint(0, 2**32 - 1) # Generate a random seed |
|||
torch_reseed(seed) |
|||
self.append_generate_chat(None) |
|||
else: |
|||
print("cannot regenerate because there are not enough self.message on history.") |
|||
print("") |
|||
|
|||
elif input_text.startswith("/more"): |
|||
self.append_generate_chat(None) |
|||
|
|||
elif input_text.startswith("/file"): |
|||
filename = input_text[len("/file "):] |
|||
print("read '%s' for prompt:" % filename) |
|||
with open(filename, "r") as f: |
|||
content = f.read() |
|||
print(content) |
|||
self.append_generate_chat(content) |
|||
|
|||
elif input_text.startswith("/auto"): |
|||
message_backup = self.message |
|||
self.message = [self.roleflip] |
|||
for m in self.message_backup: |
|||
role = m["role"] |
|||
content = m["content"] |
|||
if role == "user": |
|||
role = "assistant" |
|||
elif role == "assistant": |
|||
role = "user" |
|||
if role != "system": |
|||
self.message.append({"role": role, "content": content}) |
|||
self.append_generate_chat(None) # will automatically advance the conversation as 'user' |
|||
last_message = self.messages[-1] |
|||
last_message["role"] = "user" |
|||
self.messages = message_backup + [last_message] |
|||
self.append_generate_chat(None) # 'regular' chatbot answer |
|||
|
|||
elif input_text.startswith("/summarize"): |
|||
messages_temp = list(filter(lambda x: x["role"] != "system", self.messages)) |
|||
messages_temp = [self.summarize] + messages_temp + [self.summarize_user] # copy dict in last instance |
|||
# messages_temp[-1]["role"] = "user" |
|||
input_ids = self.inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ") |
|||
generated_tokens, full_output = self.inference.generate(input_ids) |
|||
|
|||
elif input_text.startswith("/title"): |
|||
messages_temp = list(filter(lambda x: x["role"] != "system", self.messages)) |
|||
messages_temp = [self.title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance |
|||
messages_temp[-1]["role"] = "user" |
|||
input_ids = self.inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ") |
|||
generated_tokens, full_output = self.inference.generate(input_ids) |
|||
|
|||
elif input_text.startswith("/save"): |
|||
with open("messages.json", "w") as f: |
|||
json.dump(self.messages, f, indent=4) |
|||
|
|||
elif input_text.startswith("/load"): |
|||
with open("messages.json", "r") as f: |
|||
new_messages = json.load(f) |
|||
messages = [self.messages[0]] + new_messages[1:] |
|||
|
|||
elif input_text.startswith("/help"): |
|||
print("!<prompt> answer as 'tool' in <tool_response> tags") |
|||
print("/clear clear chat history") |
|||
print("/undo undo latest prompt") |
|||
print("/regen regenerate the last message") |
|||
print("/more generate more additional information") |
|||
print("/file read prompt input from file") |
|||
print("/auto automatically advance conversation") |
|||
print("/summarize generate a summary of the chat") |
|||
print("/title generate a title of the chat") |
|||
print("/save write chat history to file") |
|||
print("/load load previously saved history") |
|||
print("/help print this message") |
|||
print("") |
|||
|
|||
elif input_text.startswith("/"): |
|||
print("unknown command.") |
|||
|
|||
else: |
|||
self.append_generate_chat(input_text) |
@ -1,273 +1,43 @@ |
|||
import time |
|||
import random |
|||
from tool_helper import tool_list, parse_and_execute_tool_call |
|||
|
|||
from tool_helper import tool_list |
|||
from tool_functions import register_dummy |
|||
from inference import Inference, torch_reseed |
|||
from inference import Inference |
|||
import datetime |
|||
from modelconfig import Modelconfig |
|||
|
|||
|
|||
messages = [] |
|||
inference = None |
|||
|
|||
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions |
|||
systemmessage = "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user." |
|||
systemmessage = "Hold a casual conversation with the user. Answer using markdown to the user." |
|||
|
|||
# system message for role flip so the model automatically answers for the user |
|||
roleflip = {"role": "system", "content": "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye."} |
|||
|
|||
# system messages and user message to bring the model to summarize the entire conversation |
|||
summarize = {"role": "system", "content": "Summarize the conversation as a single, cohesive paragraph. Avoid using any bullet points, numbers, or list formatting. Write in plain text with natural sentences that flow together seamlessly."} |
|||
summarize_user = {"role": "system", "content": "Can you summarize the conversation?"} |
|||
import model_selection |
|||
from generation_loop import Terminal, msg |
|||
|
|||
# system message to create a conversation title |
|||
title_prompt = {"role": "system", "content": "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity."} |
|||
|
|||
append_toolcalls = False |
|||
|
|||
register_dummy() |
|||
|
|||
|
|||
def initialize_config(inference: Inference) -> Terminal: |
|||
|
|||
|
|||
def append_generate_chat(input_text: str, role="user"): |
|||
t_start = time.time() |
|||
|
|||
# generate AI response |
|||
if input_text != None: |
|||
messages.append({"role": role, "content": input_text}) |
|||
|
|||
inputs = inference.tokenize(messages, tokenize=True) |
|||
number_of_input_tokens = inputs.shape[1] |
|||
|
|||
outputs, out_text = inference.generate(inputs) |
|||
|
|||
# append result to message history |
|||
messages.append({"role": "assistant", "content": out_text}) |
|||
|
|||
print("") |
|||
time_taken = time.time() - t_start |
|||
number_of_tokens = len(outputs[0]) |
|||
tokens_per_second = (number_of_tokens - number_of_input_tokens) / time_taken |
|||
print("generation took %.3fs (%d tokens, %.3f t/s)" % (time_taken, number_of_tokens, tokens_per_second)) |
|||
|
|||
# handle tool call and check if a tool call has happened. |
|||
tool_result = parse_and_execute_tool_call(out_text, tool_list) |
|||
if tool_result != None: |
|||
# tool call happened |
|||
tool_result = "<tool_response>%s</tool_response>" % tool_result |
|||
# depending on the chat template the tool response tags must or must not be passed. :( |
|||
append_generate_chat(tool_result, role="tool") |
|||
|
|||
|
|||
def terminal_generation_loop(): |
|||
global messages |
|||
global inference |
|||
|
|||
while True: |
|||
# print an input prompt to receive text or commands |
|||
input_text = input(">>> ") |
|||
print("") |
|||
|
|||
|
|||
if input_text.startswith("!"): |
|||
append_generate_chat("<tool_response>%s</tool_response>" % input_text[1:], role="tool") |
|||
# append_generate_chat("%s" % input_text[1:], role="tool") # depending on the chat template the tool response tags must or must not be passed. :( |
|||
|
|||
elif input_text.startswith("/clear"): |
|||
print("clearing chat history") |
|||
start_msg = messages[0] |
|||
messages = [start_msg] |
|||
print("") |
|||
|
|||
elif input_text.startswith("/history"): |
|||
history = inference.tokenize(messages, tokenize=False) |
|||
# history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False) |
|||
print(history) |
|||
|
|||
elif input_text.startswith("/undo"): |
|||
if len(messages) > 2: |
|||
print("undo latest prompt") |
|||
messages = messages[:-2] |
|||
else: |
|||
print("cannot undo because there are not enough messages on history.") |
|||
print("") |
|||
|
|||
elif input_text.startswith("/regen"): |
|||
if len(messages) >= 2: |
|||
print("regenerating message (not working)") |
|||
messages = messages[:-1] |
|||
seed = random.randint(0, 2**32 - 1) # Generate a random seed |
|||
torch_reseed(seed) |
|||
append_generate_chat(None) |
|||
else: |
|||
print("cannot regenerate because there are not enough messages on history.") |
|||
print("") |
|||
|
|||
elif input_text.startswith("/more"): |
|||
append_generate_chat(None) |
|||
|
|||
elif input_text.startswith("/file"): |
|||
filename = input_text[len("/file "):] |
|||
print("read '%s' for prompt:" % filename) |
|||
with open(filename, "r") as f: |
|||
content = f.read() |
|||
print(content) |
|||
append_generate_chat(content) |
|||
|
|||
elif input_text.startswith("/auto"): |
|||
messages_backup = messages |
|||
messages = [roleflip] |
|||
for m in messages_backup: |
|||
role = m["role"] |
|||
content = m["content"] |
|||
if role == "user": |
|||
role = "assistant" |
|||
elif role == "assistant": |
|||
role = "user" |
|||
if role != "system": |
|||
messages.append({"role": role, "content": content}) |
|||
append_generate_chat(None) # will automatically advance the conversation as 'user' |
|||
last_message = messages[-1] |
|||
last_message["role"] = "user" |
|||
messages = messages_backup + [last_message] |
|||
append_generate_chat(None) # 'regular' chatbot answer |
|||
|
|||
elif input_text.startswith("/summarize"): |
|||
messages_temp = list(filter(lambda x: x["role"] != "system", messages)) |
|||
messages_temp = [summarize] + messages_temp + [summarize_user] # copy dict in last instance |
|||
# messages_temp[-1]["role"] = "user" |
|||
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ") |
|||
generated_tokens, full_output = inference.generate(input_ids) |
|||
|
|||
elif input_text.startswith("/title"): |
|||
messages_temp = list(filter(lambda x: x["role"] != "system", messages)) |
|||
messages_temp = [title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance |
|||
messages_temp[-1]["role"] = "user" |
|||
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ") |
|||
generated_tokens, full_output = inference.generate(input_ids) |
|||
|
|||
elif input_text.startswith("/help"): |
|||
print("!<prompt> answer as 'tool' in <tool_response> tags") |
|||
print("/clear clear chat history") |
|||
print("/undo undo latest prompt") |
|||
print("/regen regenerate the last message") |
|||
print("/more generate more additional information") |
|||
print("/file read prompt input from file") |
|||
print("/auto automatically advance conversation") |
|||
print("/summarize generate a summary of the chat") |
|||
print("/title generate a title of the chat") |
|||
print("/help print this message") |
|||
print("") |
|||
|
|||
elif input_text.startswith("/"): |
|||
print("unknown command.") |
|||
|
|||
else: |
|||
append_generate_chat(input_text) |
|||
|
|||
|
|||
def main(): |
|||
global messages |
|||
global inference |
|||
|
|||
# model: NousResearch/Hermes-3-Llama-3.2-3B |
|||
# tokens: 315 tk |
|||
# time: 94.360 s |
|||
# speed: 3.338 tk/s |
|||
# vram_bulk: 3622 MB |
|||
# vram_top: 80 MB |
|||
# context: 131072 tk |
|||
# model = Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True) |
|||
|
|||
# model: unsloth/Llama-3.2-1B |
|||
# tokens: 589 tk |
|||
# time: 39.348 s |
|||
# speed: 14.969 tk/s |
|||
# vram_bulk: 4708 MB |
|||
# vram_top: 102 MB |
|||
# context: 131072 tk |
|||
# model = Modelconfig("unsloth/Llama-3.2-1B") # note, fast, but talks to itself. basically does not work. |
|||
|
|||
# model: unsloth/Llama-3.2-3B-Instruct |
|||
# tokens: 285 tk |
|||
# time: 75.363 s |
|||
# speed: 3.782 tk/s |
|||
# vram_bulk: 3512 MB |
|||
# vram_top: 48 MB |
|||
# context: 131072 tk |
|||
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True) |
|||
|
|||
# model: unsloth/llama-3-8b-bnb-4bit |
|||
# tokens: 435 tk |
|||
# time: 84.314 s |
|||
# speed: 5.159 tk/s |
|||
# vram_bulk: 5440 MB |
|||
# vram_top: 216 MB |
|||
# context: 8192 tk |
|||
# model = Modelconfig("unsloth/llama-3-8b-bnb-4bit") |
|||
|
|||
# Model size: 3.21B params |
|||
# vram used: xxxxx MB |
|||
# speed xxxxx t/s |
|||
# working: DOES NOT LOAD |
|||
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True) |
|||
|
|||
# model: unsloth/gemma-2-9b-it-bnb-4bit |
|||
# tokens: 154 tk |
|||
# time: 32.727 s |
|||
# speed: 4.706 tk/s |
|||
# vram_bulk: 6156 MB |
|||
# vram_top: 232 MB |
|||
# context: 8192 tk |
|||
# model = Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit") |
|||
|
|||
# model: unsloth/Qwen2.5-7B-Instruct-bnb-4bit |
|||
# tokens: 120 tk |
|||
# time: 12.248 s |
|||
# speed: 9.798 tk/s |
|||
# vram_bulk: 5382 MB |
|||
# vram_top: 170 MB |
|||
# context: 32768 tk |
|||
model = Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit") # note, this works really good |
|||
|
|||
# model: unsloth/Qwen2.5-3B-Instruct |
|||
# tokens: 112 tk |
|||
# time: 12.703 s |
|||
# speed: 8.816 tk/s |
|||
# vram_bulk: 2108 MB |
|||
# vram_top: 98 MB |
|||
# context: 32768 tk |
|||
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True) |
|||
|
|||
# model: unsloth/Qwen2.5-3B-Instruct |
|||
# tokens: 118 tk |
|||
# time: 33.748 s |
|||
# speed: 3.497 tk/s |
|||
# vram_bulk: 3310 MB |
|||
# vram_top: 60 MB |
|||
# context: 32768 tk |
|||
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True) |
|||
|
|||
# Model size: 3.87B params |
|||
# vram used: xxxxx MB |
|||
# speed xxxxx t/s |
|||
# error: requires the protobuf library but it was not found in your environment |
|||
# model = Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit") |
|||
|
|||
|
|||
inference = Inference(model) |
|||
|
|||
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions |
|||
system_prompt = "Hold a casual conversation with the user. Keep responses short at max 5 sentences and on point. Answer using markdown to the user. When providing code examples, avoid comments which provide no additional information." |
|||
current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.") |
|||
append_toolcalls = False |
|||
if append_toolcalls: |
|||
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list)}] |
|||
systemmessage = msg("system", system_prompt + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list)) |
|||
else: |
|||
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time}] |
|||
systemmessage = msg("system", system_prompt + "\n" + current_date_and_time) |
|||
|
|||
terminal = Terminal(inference, systemmessage) |
|||
|
|||
terminal_generation_loop() |
|||
# system message for role flip so the model automatically answers for the user |
|||
terminal.roleflip = msg("system", "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye.") |
|||
|
|||
# system messages and user message to bring the model to summarize the entire conversation |
|||
terminal.summarize = msg("system", "Summarize the conversation as a single, cohesive paragraph. Avoid using any bullet points, numbers, or list formatting. Write in plain text with natural sentences that flow together seamlessly.") |
|||
terminal.summarize_user = msg("system", "Can you summarize the conversation?") |
|||
|
|||
# system message to create a conversation title |
|||
terminal.title_prompt = msg("system", "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity.") |
|||
return terminal |
|||
|
|||
|
|||
|
|||
if __name__ == "__main__": |
|||
main() |
|||
|
|||
inference = Inference(model_selection.get_model()) |
|||
terminal = initialize_config(inference) |
|||
terminal.join() |
@ -0,0 +1,95 @@ |
|||
|
|||
from modelconfig import Modelconfig |
|||
|
|||
|
|||
|
|||
def get_model() -> Modelconfig: |
|||
|
|||
# model: NousResearch/Hermes-3-Llama-3.2-3B |
|||
# tokens: 315 tk |
|||
# time: 94.360 s |
|||
# speed: 3.338 tk/s |
|||
# vram_bulk: 3622 MB |
|||
# vram_top: 80 MB |
|||
# context: 131072 tk |
|||
# model = Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True) |
|||
|
|||
# model: unsloth/Llama-3.2-1B |
|||
# tokens: 589 tk |
|||
# time: 39.348 s |
|||
# speed: 14.969 tk/s |
|||
# vram_bulk: 4708 MB |
|||
# vram_top: 102 MB |
|||
# context: 131072 tk |
|||
# model = Modelconfig("unsloth/Llama-3.2-1B") # note, fast, but talks to itself. basically does not work. |
|||
|
|||
# model: unsloth/Llama-3.2-3B-Instruct |
|||
# tokens: 285 tk |
|||
# time: 75.363 s |
|||
# speed: 3.782 tk/s |
|||
# vram_bulk: 3512 MB |
|||
# vram_top: 48 MB |
|||
# context: 131072 tk |
|||
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True) |
|||
|
|||
# model: unsloth/llama-3-8b-bnb-4bit |
|||
# tokens: 435 tk |
|||
# time: 84.314 s |
|||
# speed: 5.159 tk/s |
|||
# vram_bulk: 5440 MB |
|||
# vram_top: 216 MB |
|||
# context: 8192 tk |
|||
# model = Modelconfig("unsloth/llama-3-8b-bnb-4bit") |
|||
|
|||
# Model size: 3.21B params |
|||
# vram used: xxxxx MB |
|||
# speed xxxxx t/s |
|||
# working: DOES NOT LOAD |
|||
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True) |
|||
|
|||
# model: unsloth/gemma-2-9b-it-bnb-4bit |
|||
# tokens: 154 tk |
|||
# time: 32.727 s |
|||
# speed: 4.706 tk/s |
|||
# vram_bulk: 6156 MB |
|||
# vram_top: 232 MB |
|||
# context: 8192 tk |
|||
# model = Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit") |
|||
|
|||
# model: unsloth/Qwen2.5-7B-Instruct-bnb-4bit |
|||
# tokens: 120 tk |
|||
# time: 12.248 s |
|||
# speed: 9.798 tk/s |
|||
# vram_bulk: 5382 MB |
|||
# vram_top: 170 MB |
|||
# context: 32768 tk |
|||
model = Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit") # note, this works really good |
|||
|
|||
# model: unsloth/Qwen2.5-3B-Instruct |
|||
# tokens: 112 tk |
|||
# time: 12.703 s |
|||
# speed: 8.816 tk/s |
|||
# vram_bulk: 2108 MB |
|||
# vram_top: 98 MB |
|||
# context: 32768 tk |
|||
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True) |
|||
|
|||
# model: unsloth/Qwen2.5-3B-Instruct |
|||
# tokens: 118 tk |
|||
# time: 33.748 s |
|||
# speed: 3.497 tk/s |
|||
# vram_bulk: 3310 MB |
|||
# vram_top: 60 MB |
|||
# context: 32768 tk |
|||
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True) |
|||
|
|||
# Model size: 3.87B params |
|||
# vram used: xxxxx MB |
|||
# speed xxxxx t/s |
|||
# error: requires the protobuf library but it was not found in your environment |
|||
# model = Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit") |
|||
|
|||
return model |
|||
|
|||
|
|||
|
@ -1,3 +1,4 @@ |
|||
transformers |
|||
accelerate |
|||
bitsandbytes |
|||
bitsandbytes |
|||
pytest |
Loading…
Reference in new issue