Browse Source

different caching strategy

master
Florin Tobler 5 months ago
parent
commit
78b24d8f9f
  1. 89
      inference.py
  2. 6
      llama.py

89
inference.py

@ -4,6 +4,14 @@ if __name__ == "__main__":
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from transformers.cache_utils import (
DynamicCache,
SinkCache,
StaticCache,
SlidingWindowCache,
QuantoQuantizedCache,
QuantizedCacheConfig,
)
import torch
import time
import utils
@ -20,6 +28,7 @@ class Inference:
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "gpt2"
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
@ -44,6 +53,11 @@ class Inference:
quantization_config=quantization_config_8bit
)
# print("apply optimization")
# self.model.generation_config.cache_implementation = "static"
# self.model.forward = torch.compile(self.model.forward, mode="reduce-overhead", fullgraph=True)
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
@ -57,6 +71,11 @@ class Inference:
print("max_context_length is %d tokens." % (max_context_length))
def generate(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
with torch.inference_mode():
return self.generate_incremental_2(input_ids)
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
outputs = self.model.generate(
input_ids, # **inputs, inputs["input_ids"]
@ -64,14 +83,72 @@ class Inference:
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1
num_return_sequences=1,
num_beams = 1
)
# skip all input tokens and only output the additional generated part of the conversation
input_token_count = len(input_ids[0])
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
print(out_text)
return outputs, out_text
def generate_incremental_2(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
generated_tokens = input_ids
# past_key_values = DynamicCache()
past_key_values = StaticCache(config=self.model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
# n = 0
try:
while True:
outputs = self.model.generate(
generated_tokens, # **inputs, inputs["input_ids"]
max_new_tokens=10, # like streaming
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1,
num_beams = 1,
use_cache=True,
past_key_values=past_key_values
)
# past_key_values = outputs.past_key_values
# Get the next token (the last token from the generated sequence)
# next_token = outputs.argmax(dim=-1)[:, -1]
new_tokens = outputs[0, len(generated_tokens[0]):]
# next_token = outputs[0,-1]
# Append the new token to the sequence
generated_tokens = outputs
# generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0).unsqueeze(0)], dim=1)
# Decode and print the newly generated token (skip special tokens)
# out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
out_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
# if next_token.item() == self.tokenizer.eos_token_id:
if new_tokens[-1].item() == self.tokenizer.eos_token_id:
print("")
break
# n += 1
# if n >= 15:
# n = 0
# torch.cuda.empty_cache()
except KeyboardInterrupt:
pass
# Once done, return the full generated sequence
input_token_count = len(input_ids[0])
full_output = self.tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
# torch.cuda.empty_cache()
return generated_tokens, full_output
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
@ -83,13 +160,21 @@ class Inference:
# Start with the initial input tokens
generated_tokens = input_ids # Initially, this is just the input tokens
# past_key_values = DynamicCache()
# max_cache_length = past_key_values.get_max_length()
n = 0
try:
# Loop to generate one token at a time
while True:
# Call the model with the current tokens
outputs = self.model(input_ids=generated_tokens, use_cache=True)
outputs = self.model(
input_ids=generated_tokens,
use_cache=True,
num_beams = 1
# past_key_values=past_key_values
)
# Get the next token (the last token from the generated sequence)
next_token = outputs.logits.argmax(dim=-1)[:, -1]

6
llama.py

@ -39,7 +39,7 @@ def append_generate_chat(input_text: str, role="user"):
inputs = inference.tokenize(messages, tokenize=True)
outputs, out_text = inference.generate_incremental(inputs)
outputs, out_text = inference.generate(inputs)
# append result to message history
messages.append({"role": "assistant", "content": out_text})
@ -141,14 +141,14 @@ def main():
messages_temp = [summarize] + messages_temp + [summarize_user] # copy dict in last instance
# messages_temp[-1]["role"] = "user"
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ")
generated_tokens, full_output = inference.generate_incremental(input_ids)
generated_tokens, full_output = inference.generate(input_ids)
elif input_text.startswith("/title"):
messages_temp = list(filter(lambda x: x["role"] != "system", messages))
messages_temp = [title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance
messages_temp[-1]["role"] = "user"
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ")
generated_tokens, full_output = inference.generate_incremental(input_ids)
generated_tokens, full_output = inference.generate(input_ids)
elif input_text.startswith("/help"):
print("!<prompt> answer as 'tool' in <tool_response> tags")

Loading…
Cancel
Save