You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

248 lines
10 KiB

if __name__ == "__main__":
# this message is at the start, because initializing torch/transformers takes lots of time. fail fast.
raise Exception("cannot execute this file directly")
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from transformers.cache_utils import (
DynamicCache,
SinkCache,
StaticCache,
SlidingWindowCache,
QuantoQuantizedCache,
QuantizedCacheConfig,
)
import torch
import time
import utils
import re
import os
torch.set_num_threads(os.cpu_count()) # Adjust this to the number of threads/cores you have
class Inference:
def __init__(self):
print("loading LLM...")
t_start = time.time()
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "gpt2"
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
)
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# Load the model with quantization (optional)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
# device_map="auto", # Automatically places parts of the model on GPU/CPU
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
device_map="cuda", # Automatically places parts of the model on GPU/CPU
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
quantization_config=quantization_config_8bit
)
# print("apply optimization")
# self.model.generation_config.cache_implementation = "static"
# self.model.forward = torch.compile(self.model.forward, mode="reduce-overhead", fullgraph=True)
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
print("load took %.3fs" % (time.time() - t_start))
max_context_length = self.model.config.max_position_embeddings
self.tokenizer.chat_template = utils.load_json_file("chat_template.json")
print("max_context_length is %d tokens." % (max_context_length))
def generate(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
with torch.inference_mode():
return self.generate_incremental_2(input_ids)
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
outputs = self.model.generate(
input_ids, # **inputs, inputs["input_ids"]
max_new_tokens=500, # max_length=max_context_length,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1,
num_beams = 1
)
# skip all input tokens and only output the additional generated part of the conversation
input_token_count = len(input_ids[0])
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
print(out_text)
return outputs, out_text
def generate_incremental_2(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
generated_tokens = input_ids
# past_key_values = DynamicCache()
past_key_values = StaticCache(config=self.model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
# n = 0
try:
while True:
outputs = self.model.generate(
generated_tokens, # **inputs, inputs["input_ids"]
max_new_tokens=10, # like streaming
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1,
num_beams = 1,
use_cache=True,
past_key_values=past_key_values
)
# past_key_values = outputs.past_key_values
# Get the next token (the last token from the generated sequence)
# next_token = outputs.argmax(dim=-1)[:, -1]
new_tokens = outputs[0, len(generated_tokens[0]):]
# next_token = outputs[0,-1]
# Append the new token to the sequence
generated_tokens = outputs
# generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0).unsqueeze(0)], dim=1)
# Decode and print the newly generated token (skip special tokens)
# out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
out_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
# if next_token.item() == self.tokenizer.eos_token_id:
if new_tokens[-1].item() == self.tokenizer.eos_token_id:
print("")
break
# n += 1
# if n >= 15:
# n = 0
# torch.cuda.empty_cache()
except KeyboardInterrupt:
pass
# Once done, return the full generated sequence
input_token_count = len(input_ids[0])
full_output = self.tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
# torch.cuda.empty_cache()
return generated_tokens, full_output
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
with torch.inference_mode():
return self._generate_incremental(input_ids)
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
# Start with the initial input tokens
generated_tokens = input_ids # Initially, this is just the input tokens
# past_key_values = DynamicCache()
# max_cache_length = past_key_values.get_max_length()
n = 0
try:
# Loop to generate one token at a time
while True:
# Call the model with the current tokens
outputs = self.model(
input_ids=generated_tokens,
use_cache=True,
num_beams = 1
# past_key_values=past_key_values
)
# Get the next token (the last token from the generated sequence)
next_token = outputs.logits.argmax(dim=-1)[:, -1]
# Append the new token to the sequence
generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
# Decode and print the newly generated token (skip special tokens)
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
if next_token.item() == self.tokenizer.eos_token_id:
print("")
break
n += 1
if n >= 15:
n = 0
torch.cuda.empty_cache()
except KeyboardInterrupt:
pass
# Once done, return the full generated sequence
input_token_count = len(input_ids[0])
full_output = self.tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
torch.cuda.empty_cache()
return generated_tokens, full_output
def tokenize(self, messages: list[dict], tokenize: bool, assistant_prefix: str = None) -> str | torch.Tensor:
if tokenize:
inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
inputs = {key: value.to(self.model.device) for key, value in inputs.items()}
input_ids = inputs["input_ids"]
# Append the assistant prefix if provided
if assistant_prefix:
prefix_ids = self.tokenizer(assistant_prefix, return_tensors="pt")["input_ids"]
input_ids = torch.cat([input_ids, prefix_ids.to(self.model.device)], dim=-1)
return input_ids
else:
# only plain text generation
message = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
# Append the assistant prefix to raw text if provided
if assistant_prefix:
message += f"<|im_start|>assistant\n{assistant_prefix}"
return message
def generate_tool_use_header(self, tools: list[callable]) -> str:
temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
s = self.tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
match = re.search(pattern, s, re.DOTALL)
if not match:
raise Exception("Failed to regex match the template tool system text.")
extraction = match.group(1)
return extraction
def torch_reseed(seed: int):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)