Browse Source

lift inference part our of llama.py

master
Florin Tobler 6 months ago
parent
commit
4d034c7f2b
  1. 148
      inference.py
  2. 209
      llama.py

148
inference.py

@ -0,0 +1,148 @@
if __name__ == "__main__":
# this message is at the start, because initializing torch/transformers takes lots of time. fail fast.
raise Exception("cannot execute this file directly")
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import time
import utils
import re
class Inference:
def __init__(self):
print("loading LLM...")
t_start = time.time()
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
)
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# Load the model with quantization (optional)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
# device_map="auto", # Automatically places parts of the model on GPU/CPU
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
device_map="cuda", # Automatically places parts of the model on GPU/CPU
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
quantization_config=quantization_config_8bit
)
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
print("load took %.3fs" % (time.time() - t_start))
max_context_length = self.model.config.max_position_embeddings
self.tokenizer.chat_template = utils.load_json_file("chat_template.json")
print("max_context_length is %d tokens." % (max_context_length))
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
outputs = self.model.generate(
input_ids, # **inputs, inputs["input_ids"]
max_new_tokens=500, # max_length=max_context_length,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1
)
# skip all input tokens and only output the additional generated part of the conversation
input_token_count = len(input_ids[0])
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
print(out_text)
return outputs, out_text
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
with torch.inference_mode():
return self._generate_incremental(input_ids)
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
# Start with the initial input tokens
generated_tokens = input_ids # Initially, this is just the input tokens
n = 0
try:
# Loop to generate one token at a time
while True:
# Call the model with the current tokens
outputs = self.model(input_ids=generated_tokens, use_cache=True)
# Get the next token (the last token from the generated sequence)
next_token = outputs.logits.argmax(dim=-1)[:, -1]
# Append the new token to the sequence
generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
# Decode and print the newly generated token (skip special tokens)
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
if next_token.item() == self.tokenizer.eos_token_id:
print("")
break
n += 1
if n >= 15:
n = 0
torch.cuda.empty_cache()
except KeyboardInterrupt:
pass
# Once done, return the full generated sequence
input_token_count = len(input_ids[0])
full_output = self.tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
torch.cuda.empty_cache()
return generated_tokens, full_output
def tokenize(self, messages: list[dict], tokenize: bool) -> str | torch.Tensor:
if tokenize:
inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
inputs = {key: value.to(self.model.device) for key, value in inputs.items()}
return inputs["input_ids"]
else:
message = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
return message
def generate_tool_use_header(self, tools: list[callable]) -> str:
temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
s = self.tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
match = re.search(pattern, s, re.DOTALL)
if not match:
raise Exception("Failed to regex match the template tool system text.")
extraction = match.group(1)
return extraction
def torch_reseed(seed: int):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

209
llama.py

@ -1,54 +1,55 @@
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import time
import torch
# import torch
import random
from tool_helper import tool_list, parse_and_execute_tool_call
from tool_functions import register_dummy
import utils
import re
# import utils
# import re
from inference import Inference, torch_reseed
t_start = time.time()
# t_start = time.time()
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
# # model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# # model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# # model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# # "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
)
# quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4", # Recommended for better performance
# bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
# bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
# )
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# Load the model with quantization (optional)
model = AutoModelForCausalLM.from_pretrained(
model_name,
# device_map="auto", # Automatically places parts of the model on GPU/CPU
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
device_map="cuda", # Automatically places parts of the model on GPU/CPU
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
quantization_config=quantization_config_8bit
)
# # Load the model with quantization (optional)
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# # device_map="auto", # Automatically places parts of the model on GPU/CPU
# # device_map="cuda", # Automatically places parts of the model on GPU/CPU
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
# # load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
# quantization_config=quantization_config_8bit
# )
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# # Load tokenizer
# tokenizer = AutoTokenizer.from_pretrained(model_name)
print("load took %.3fs" % (time.time() - t_start))
# print("load took %.3fs" % (time.time() - t_start))
max_context_length = model.config.max_position_embeddings
# max_context_length = model.config.max_position_embeddings
tokenizer.chat_template = utils.load_json_file("chat_template.json")
# tokenizer.chat_template = utils.load_json_file("chat_template.json")
print("max_context_length is %d tokens." % (max_context_length))
# print("max_context_length is %d tokens." % (max_context_length))
# Generate text
@ -95,6 +96,8 @@ messages = [
# {"role": "user", "content": "Hello, who are you?"}
]
inference = None
systemmessage = "Hold a casual conversation with the user. Keep responses short at max 3 sentences."
roleflip = {"role": "system", "content": "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye."}
@ -106,67 +109,67 @@ register_dummy()
def generate_batch(inputs):
outputs = model.generate(
inputs["input_ids"], # **inputs,
max_new_tokens=500, # max_length=max_context_length,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1
)
# skip all input tokens and only output the additional generated part of the conversation
input_token_count = len(inputs["input_ids"][0])
out_text = tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
print(out_text)
return outputs, out_text
# def generate_batch(inputs):
# outputs = model.generate(
# inputs["input_ids"], # **inputs,
# max_new_tokens=500, # max_length=max_context_length,
# pad_token_id=tokenizer.pad_token_id,
# eos_token_id=tokenizer.eos_token_id,
# do_sample=True,
# num_return_sequences=1
# )
# # skip all input tokens and only output the additional generated part of the conversation
# input_token_count = len(inputs["input_ids"][0])
# out_text = tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
# print(out_text)
# return outputs, out_text
def generate_incremental(inputs):
# Start with the initial input tokens
input_ids = inputs["input_ids"]
generated_tokens = input_ids # Initially, this is just the input tokens
# def generate_incremental(inputs):
# # Start with the initial input tokens
# input_ids = inputs["input_ids"]
# generated_tokens = input_ids # Initially, this is just the input tokens
n = 0
try:
# n = 0
# try:
# Loop to generate one token at a time
while True:
# Call the model with the current tokens
outputs = model(input_ids=generated_tokens, use_cache=True)
# # Loop to generate one token at a time
# while True:
# # Call the model with the current tokens
# outputs = model(input_ids=generated_tokens, use_cache=True)
# Get the next token (the last token from the generated sequence)
next_token = outputs.logits.argmax(dim=-1)[:, -1]
# # Get the next token (the last token from the generated sequence)
# next_token = outputs.logits.argmax(dim=-1)[:, -1]
# Append the new token to the sequence
generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
# # Append the new token to the sequence
# generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
# Decode and print the newly generated token (skip special tokens)
out_text = tokenizer.decode(next_token, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline
# # Decode and print the newly generated token (skip special tokens)
# out_text = tokenizer.decode(next_token, skip_special_tokens=True)
# print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token
if next_token.item() == tokenizer.eos_token_id:
print("")
break
# # Check if the generated token is the end-of-sequence token
# if next_token.item() == tokenizer.eos_token_id:
# print("")
# break
n += 1
if n >= 15:
n = 0
torch.cuda.empty_cache()
# n += 1
# if n >= 15:
# n = 0
# torch.cuda.empty_cache()
except KeyboardInterrupt:
pass
# except KeyboardInterrupt:
# pass
# Once done, return the full generated sequence
input_token_count = len(inputs["input_ids"][0])
full_output = tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
# # Once done, return the full generated sequence
# input_token_count = len(inputs["input_ids"][0])
# full_output = tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
torch.cuda.empty_cache()
# torch.cuda.empty_cache()
return generated_tokens, full_output
# return generated_tokens, full_output
def append_generate_chat(input_text: str, role="user"):
@ -176,15 +179,16 @@ def append_generate_chat(input_text: str, role="user"):
if input_text != None:
messages.append({"role": role, "content": input_text})
# input_text = "Hello, who are you?"
# inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # .to("cuda") .to("cpu")
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
inputs = {key: value.to(model.device) for key, value in inputs.items()}
# inputs = {key: value.to("cpu") for key, value in inputs.items()}
# inputs["input_ids"] = inputs["input_ids"][:, 1:]
# # input_text = "Hello, who are you?"
# # inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # .to("cuda") .to("cpu")
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
# inputs = {key: value.to(model.device) for key, value in inputs.items()}
# # inputs = {key: value.to("cpu") for key, value in inputs.items()}
# # inputs["input_ids"] = inputs["input_ids"][:, 1:]
inputs = inference.tokenize(messages, tokenize=True)
with torch.inference_mode():
outputs, out_text = generate_incremental(inputs)
outputs, out_text = inference.generate_incremental(inputs)
# append result to message history
messages.append({"role": "assistant", "content": out_text})
@ -202,21 +206,24 @@ def append_generate_chat(input_text: str, role="user"):
def generate_tool_use_header(tools: list[callable]) -> str:
temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
s = tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
match = re.search(pattern, s, re.DOTALL)
if not match:
raise Exception("Failed to regex match the template tool system text.")
extraction = match.group(1)
return extraction
# def generate_tool_use_header(tools: list[callable]) -> str:
# temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
# s = tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
# pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
# match = re.search(pattern, s, re.DOTALL)
# if not match:
# raise Exception("Failed to regex match the template tool system text.")
# extraction = match.group(1)
# return extraction
def main():
global messages
global inference
inference = Inference()
messages = [{"role": "system", "content": systemmessage + "\n" + generate_tool_use_header(tool_list)}]
messages = [{"role": "system", "content": systemmessage + "\n" + inference.generate_tool_use_header(tool_list)}]
while True:
# print an input prompt to receive text or commands
@ -235,7 +242,8 @@ def main():
print("")
elif input_text.startswith("/history"):
history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
history = inference.tokenize(messages, tokenize=False)
# history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
print(history)
elif input_text.startswith("/undo"):
@ -251,8 +259,7 @@ def main():
print("regenerating message (not working)")
messages = messages[:-1]
seed = random.randint(0, 2**32 - 1) # Generate a random seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch_reseed(seed)
append_generate_chat(None)
else:
print("cannot regenerate because there are not enough messages on history.")
@ -304,3 +311,7 @@ def main():
else:
append_generate_chat(input_text)
if __name__ == "__main__":
main()
Loading…
Cancel
Save