lift inference part our of llama.py
This commit is contained in:
148
inference.py
Normal file
148
inference.py
Normal file
@@ -0,0 +1,148 @@
|
||||
if __name__ == "__main__":
|
||||
# this message is at the start, because initializing torch/transformers takes lots of time. fail fast.
|
||||
raise Exception("cannot execute this file directly")
|
||||
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
import torch
|
||||
import time
|
||||
import utils
|
||||
import re
|
||||
|
||||
|
||||
|
||||
class Inference:
|
||||
def __init__(self):
|
||||
print("loading LLM...")
|
||||
t_start = time.time()
|
||||
|
||||
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
||||
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
||||
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
|
||||
|
||||
|
||||
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4", # Recommended for better performance
|
||||
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
|
||||
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
|
||||
)
|
||||
|
||||
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
# Load the model with quantization (optional)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
# device_map="auto", # Automatically places parts of the model on GPU/CPU
|
||||
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
|
||||
quantization_config=quantization_config_8bit
|
||||
)
|
||||
|
||||
# Load tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
print("load took %.3fs" % (time.time() - t_start))
|
||||
|
||||
max_context_length = self.model.config.max_position_embeddings
|
||||
|
||||
|
||||
self.tokenizer.chat_template = utils.load_json_file("chat_template.json")
|
||||
|
||||
print("max_context_length is %d tokens." % (max_context_length))
|
||||
|
||||
|
||||
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
outputs = self.model.generate(
|
||||
input_ids, # **inputs, inputs["input_ids"]
|
||||
max_new_tokens=500, # max_length=max_context_length,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
eos_token_id=self.tokenizer.eos_token_id,
|
||||
do_sample=True,
|
||||
num_return_sequences=1
|
||||
)
|
||||
# skip all input tokens and only output the additional generated part of the conversation
|
||||
input_token_count = len(input_ids[0])
|
||||
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
|
||||
print(out_text)
|
||||
return outputs, out_text
|
||||
|
||||
|
||||
|
||||
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
with torch.inference_mode():
|
||||
return self._generate_incremental(input_ids)
|
||||
|
||||
|
||||
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]:
|
||||
# Start with the initial input tokens
|
||||
generated_tokens = input_ids # Initially, this is just the input tokens
|
||||
|
||||
n = 0
|
||||
try:
|
||||
|
||||
# Loop to generate one token at a time
|
||||
while True:
|
||||
# Call the model with the current tokens
|
||||
outputs = self.model(input_ids=generated_tokens, use_cache=True)
|
||||
|
||||
# Get the next token (the last token from the generated sequence)
|
||||
next_token = outputs.logits.argmax(dim=-1)[:, -1]
|
||||
|
||||
# Append the new token to the sequence
|
||||
generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
|
||||
|
||||
# Decode and print the newly generated token (skip special tokens)
|
||||
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
|
||||
print(out_text, end="", flush=True) # Print without newline
|
||||
|
||||
# Check if the generated token is the end-of-sequence token
|
||||
if next_token.item() == self.tokenizer.eos_token_id:
|
||||
print("")
|
||||
break
|
||||
|
||||
n += 1
|
||||
if n >= 15:
|
||||
n = 0
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
# Once done, return the full generated sequence
|
||||
input_token_count = len(input_ids[0])
|
||||
full_output = self.tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return generated_tokens, full_output
|
||||
|
||||
|
||||
def tokenize(self, messages: list[dict], tokenize: bool) -> str | torch.Tensor:
|
||||
if tokenize:
|
||||
inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
|
||||
inputs = {key: value.to(self.model.device) for key, value in inputs.items()}
|
||||
return inputs["input_ids"]
|
||||
else:
|
||||
message = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
|
||||
return message
|
||||
|
||||
|
||||
def generate_tool_use_header(self, tools: list[callable]) -> str:
|
||||
temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
|
||||
s = self.tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
|
||||
pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
|
||||
match = re.search(pattern, s, re.DOTALL)
|
||||
if not match:
|
||||
raise Exception("Failed to regex match the template tool system text.")
|
||||
extraction = match.group(1)
|
||||
return extraction
|
||||
|
||||
|
||||
def torch_reseed(seed: int):
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
209
llama.py
209
llama.py
@@ -1,54 +1,55 @@
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
import time
|
||||
import torch
|
||||
# import torch
|
||||
import random
|
||||
from tool_helper import tool_list, parse_and_execute_tool_call
|
||||
from tool_functions import register_dummy
|
||||
import utils
|
||||
import re
|
||||
# import utils
|
||||
# import re
|
||||
from inference import Inference, torch_reseed
|
||||
|
||||
t_start = time.time()
|
||||
# t_start = time.time()
|
||||
|
||||
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
||||
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
||||
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
|
||||
# # model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
# model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
|
||||
# # model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
||||
# # model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
||||
# # "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
|
||||
|
||||
|
||||
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4", # Recommended for better performance
|
||||
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
|
||||
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
|
||||
)
|
||||
# quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
|
||||
# load_in_4bit=True,
|
||||
# bnb_4bit_quant_type="nf4", # Recommended for better performance
|
||||
# bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
|
||||
# bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
|
||||
# )
|
||||
|
||||
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
|
||||
# quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
# Load the model with quantization (optional)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
# device_map="auto", # Automatically places parts of the model on GPU/CPU
|
||||
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
|
||||
quantization_config=quantization_config_8bit
|
||||
)
|
||||
# # Load the model with quantization (optional)
|
||||
# model = AutoModelForCausalLM.from_pretrained(
|
||||
# model_name,
|
||||
# # device_map="auto", # Automatically places parts of the model on GPU/CPU
|
||||
# # device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
# device_map="cuda", # Automatically places parts of the model on GPU/CPU
|
||||
# # load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
|
||||
# quantization_config=quantization_config_8bit
|
||||
# )
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
# # Load tokenizer
|
||||
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
print("load took %.3fs" % (time.time() - t_start))
|
||||
# print("load took %.3fs" % (time.time() - t_start))
|
||||
|
||||
max_context_length = model.config.max_position_embeddings
|
||||
# max_context_length = model.config.max_position_embeddings
|
||||
|
||||
|
||||
tokenizer.chat_template = utils.load_json_file("chat_template.json")
|
||||
# tokenizer.chat_template = utils.load_json_file("chat_template.json")
|
||||
|
||||
|
||||
|
||||
|
||||
print("max_context_length is %d tokens." % (max_context_length))
|
||||
# print("max_context_length is %d tokens." % (max_context_length))
|
||||
|
||||
|
||||
# Generate text
|
||||
@@ -95,6 +96,8 @@ messages = [
|
||||
# {"role": "user", "content": "Hello, who are you?"}
|
||||
]
|
||||
|
||||
inference = None
|
||||
|
||||
systemmessage = "Hold a casual conversation with the user. Keep responses short at max 3 sentences."
|
||||
|
||||
roleflip = {"role": "system", "content": "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye."}
|
||||
@@ -106,67 +109,67 @@ register_dummy()
|
||||
|
||||
|
||||
|
||||
def generate_batch(inputs):
|
||||
outputs = model.generate(
|
||||
inputs["input_ids"], # **inputs,
|
||||
max_new_tokens=500, # max_length=max_context_length,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
do_sample=True,
|
||||
num_return_sequences=1
|
||||
)
|
||||
# skip all input tokens and only output the additional generated part of the conversation
|
||||
input_token_count = len(inputs["input_ids"][0])
|
||||
out_text = tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
|
||||
print(out_text)
|
||||
return outputs, out_text
|
||||
# def generate_batch(inputs):
|
||||
# outputs = model.generate(
|
||||
# inputs["input_ids"], # **inputs,
|
||||
# max_new_tokens=500, # max_length=max_context_length,
|
||||
# pad_token_id=tokenizer.pad_token_id,
|
||||
# eos_token_id=tokenizer.eos_token_id,
|
||||
# do_sample=True,
|
||||
# num_return_sequences=1
|
||||
# )
|
||||
# # skip all input tokens and only output the additional generated part of the conversation
|
||||
# input_token_count = len(inputs["input_ids"][0])
|
||||
# out_text = tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
|
||||
# print(out_text)
|
||||
# return outputs, out_text
|
||||
|
||||
|
||||
|
||||
def generate_incremental(inputs):
|
||||
# Start with the initial input tokens
|
||||
input_ids = inputs["input_ids"]
|
||||
generated_tokens = input_ids # Initially, this is just the input tokens
|
||||
# def generate_incremental(inputs):
|
||||
# # Start with the initial input tokens
|
||||
# input_ids = inputs["input_ids"]
|
||||
# generated_tokens = input_ids # Initially, this is just the input tokens
|
||||
|
||||
n = 0
|
||||
try:
|
||||
# n = 0
|
||||
# try:
|
||||
|
||||
# Loop to generate one token at a time
|
||||
while True:
|
||||
# Call the model with the current tokens
|
||||
outputs = model(input_ids=generated_tokens, use_cache=True)
|
||||
# # Loop to generate one token at a time
|
||||
# while True:
|
||||
# # Call the model with the current tokens
|
||||
# outputs = model(input_ids=generated_tokens, use_cache=True)
|
||||
|
||||
# Get the next token (the last token from the generated sequence)
|
||||
next_token = outputs.logits.argmax(dim=-1)[:, -1]
|
||||
# # Get the next token (the last token from the generated sequence)
|
||||
# next_token = outputs.logits.argmax(dim=-1)[:, -1]
|
||||
|
||||
# Append the new token to the sequence
|
||||
generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
|
||||
# # Append the new token to the sequence
|
||||
# generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1)
|
||||
|
||||
# Decode and print the newly generated token (skip special tokens)
|
||||
out_text = tokenizer.decode(next_token, skip_special_tokens=True)
|
||||
print(out_text, end="", flush=True) # Print without newline
|
||||
# # Decode and print the newly generated token (skip special tokens)
|
||||
# out_text = tokenizer.decode(next_token, skip_special_tokens=True)
|
||||
# print(out_text, end="", flush=True) # Print without newline
|
||||
|
||||
# Check if the generated token is the end-of-sequence token
|
||||
if next_token.item() == tokenizer.eos_token_id:
|
||||
print("")
|
||||
break
|
||||
# # Check if the generated token is the end-of-sequence token
|
||||
# if next_token.item() == tokenizer.eos_token_id:
|
||||
# print("")
|
||||
# break
|
||||
|
||||
n += 1
|
||||
if n >= 15:
|
||||
n = 0
|
||||
torch.cuda.empty_cache()
|
||||
# n += 1
|
||||
# if n >= 15:
|
||||
# n = 0
|
||||
# torch.cuda.empty_cache()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
# except KeyboardInterrupt:
|
||||
# pass
|
||||
|
||||
|
||||
# Once done, return the full generated sequence
|
||||
input_token_count = len(inputs["input_ids"][0])
|
||||
full_output = tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
|
||||
# # Once done, return the full generated sequence
|
||||
# input_token_count = len(inputs["input_ids"][0])
|
||||
# full_output = tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
# torch.cuda.empty_cache()
|
||||
|
||||
return generated_tokens, full_output
|
||||
# return generated_tokens, full_output
|
||||
|
||||
|
||||
def append_generate_chat(input_text: str, role="user"):
|
||||
@@ -176,15 +179,16 @@ def append_generate_chat(input_text: str, role="user"):
|
||||
if input_text != None:
|
||||
messages.append({"role": role, "content": input_text})
|
||||
|
||||
# input_text = "Hello, who are you?"
|
||||
# inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # .to("cuda") .to("cpu")
|
||||
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
|
||||
inputs = {key: value.to(model.device) for key, value in inputs.items()}
|
||||
# inputs = {key: value.to("cpu") for key, value in inputs.items()}
|
||||
# inputs["input_ids"] = inputs["input_ids"][:, 1:]
|
||||
# # input_text = "Hello, who are you?"
|
||||
# # inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # .to("cuda") .to("cpu")
|
||||
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True,
|
||||
# inputs = {key: value.to(model.device) for key, value in inputs.items()}
|
||||
# # inputs = {key: value.to("cpu") for key, value in inputs.items()}
|
||||
# # inputs["input_ids"] = inputs["input_ids"][:, 1:]
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs, out_text = generate_incremental(inputs)
|
||||
inputs = inference.tokenize(messages, tokenize=True)
|
||||
|
||||
outputs, out_text = inference.generate_incremental(inputs)
|
||||
|
||||
# append result to message history
|
||||
messages.append({"role": "assistant", "content": out_text})
|
||||
@@ -202,21 +206,24 @@ def append_generate_chat(input_text: str, role="user"):
|
||||
|
||||
|
||||
|
||||
def generate_tool_use_header(tools: list[callable]) -> str:
|
||||
temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
|
||||
s = tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
|
||||
pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
|
||||
match = re.search(pattern, s, re.DOTALL)
|
||||
if not match:
|
||||
raise Exception("Failed to regex match the template tool system text.")
|
||||
extraction = match.group(1)
|
||||
return extraction
|
||||
# def generate_tool_use_header(tools: list[callable]) -> str:
|
||||
# temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array.
|
||||
# s = tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools)
|
||||
# pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>"
|
||||
# match = re.search(pattern, s, re.DOTALL)
|
||||
# if not match:
|
||||
# raise Exception("Failed to regex match the template tool system text.")
|
||||
# extraction = match.group(1)
|
||||
# return extraction
|
||||
|
||||
|
||||
def main():
|
||||
global messages
|
||||
global inference
|
||||
|
||||
messages = [{"role": "system", "content": systemmessage + "\n" + generate_tool_use_header(tool_list)}]
|
||||
inference = Inference()
|
||||
|
||||
messages = [{"role": "system", "content": systemmessage + "\n" + inference.generate_tool_use_header(tool_list)}]
|
||||
|
||||
while True:
|
||||
# print an input prompt to receive text or commands
|
||||
@@ -235,7 +242,8 @@ def main():
|
||||
print("")
|
||||
|
||||
elif input_text.startswith("/history"):
|
||||
history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
|
||||
history = inference.tokenize(messages, tokenize=False)
|
||||
# history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
|
||||
print(history)
|
||||
|
||||
elif input_text.startswith("/undo"):
|
||||
@@ -251,8 +259,7 @@ def main():
|
||||
print("regenerating message (not working)")
|
||||
messages = messages[:-1]
|
||||
seed = random.randint(0, 2**32 - 1) # Generate a random seed
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
torch_reseed(seed)
|
||||
append_generate_chat(None)
|
||||
else:
|
||||
print("cannot regenerate because there are not enough messages on history.")
|
||||
@@ -304,3 +311,7 @@ def main():
|
||||
else:
|
||||
append_generate_chat(input_text)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user