first commit

This commit is contained in:
2022-01-30 23:15:09 +01:00
commit 7f6cd81913
88 changed files with 86253 additions and 0 deletions

View File

@@ -0,0 +1,514 @@
/**
******************************************************************************
* @file stm32f0xx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs categories:
(+) HAL Initialization and de-initialization functions
(+) HAL Control functions
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup HAL HAL
* @brief HAL module driver.
* @{
*/
#ifdef HAL_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup HAL_Private_Constants HAL Private Constants
* @{
*/
/**
* @brief STM32F0xx HAL Driver version number V1.7.6
*/
#define __STM32F0xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32F0xx_HAL_VERSION_SUB1 (0x07U) /*!< [23:16] sub1 version */
#define __STM32F0xx_HAL_VERSION_SUB2 (0x06U) /*!< [15:8] sub2 version */
#define __STM32F0xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32F0xx_HAL_VERSION ((__STM32F0xx_HAL_VERSION_MAIN << 24U)\
|(__STM32F0xx_HAL_VERSION_SUB1 << 16U)\
|(__STM32F0xx_HAL_VERSION_SUB2 << 8U )\
|(__STM32F0xx_HAL_VERSION_RC))
#define IDCODE_DEVID_MASK (0x00000FFFU)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup HAL_Private_Macros HAL Private Macros
* @{
*/
/**
* @}
*/
/* Exported variables ---------------------------------------------------------*/
/** @defgroup HAL_Private_Variables HAL Exported Variables
* @{
*/
__IO uint32_t uwTick;
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup HAL_Exported_Functions HAL Exported Functions
* @{
*/
/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initializes the Flash interface, the NVIC allocation and initial clock
configuration. It initializes the systick also when timeout is needed
and the backup domain when enabled.
(+) de-Initializes common part of the HAL.
(+) Configure The time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __Weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief This function configures the Flash prefetch,
* Configures time base source, NVIC and Low level hardware
* @note This function is called at the beginning of program after reset and before
* the clock configuration
* @note The time base configuration is based on HSI clock when exiting from Reset.
* Once done, time base tick start incrementing.
* In the default implementation,Systick is used as source of time base.
* The tick variable is incremented each 1ms in its ISR.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
/* Configure Flash prefetch */
#if (PREFETCH_ENABLE != 0)
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif /* PREFETCH_ENABLE */
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
HAL_InitTick(TICK_INT_PRIORITY);
/* Init the low level hardware */
HAL_MspInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief This function de-Initialize common part of the HAL and stops the SysTick
* of time base.
* @note This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
__HAL_RCC_APB1_FORCE_RESET();
__HAL_RCC_APB1_RELEASE_RESET();
__HAL_RCC_APB2_FORCE_RESET();
__HAL_RCC_APB2_RELEASE_RESET();
__HAL_RCC_AHB_FORCE_RESET();
__HAL_RCC_AHB_RELEASE_RESET();
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __Weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/*Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) > 0U)
{
return HAL_ERROR;
}
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device identifier
(+) Get the device revision identifier
(+) Enable/Disable Debug module during Sleep mode
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in SysTick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
return uwTick;
}
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief return tick frequency.
* @retval tick period in Hz
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
/**
* @brief This function provides accurate delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note ThiS function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
/* Disable SysTick Interrupt */
CLEAR_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
/* Enable SysTick Interrupt */
SET_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief This method returns the HAL revision
* @retval version 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32F0xx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return((DBGMCU->IDCODE) >> 16U);
}
/**
* @brief Returns the device identifier.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
}
/**
* @brief Returns first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return(READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Returns second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Returns third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
/**
* @brief Enable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Disable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Enable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Disable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,341 @@
/**
******************************************************************************
* @file stm32f0xx_hal_cortex.c
* @author MCD Application Team
* @brief CORTEX HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the CORTEX:
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
* @verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** How to configure Interrupts using CORTEX HAL driver ***
===========================================================
[..]
This section provides functions allowing to configure the NVIC interrupts (IRQ).
The Cortex-M0 exceptions are managed by CMSIS functions.
(#) Enable and Configure the priority of the selected IRQ Channels.
The priority can be 0..3.
-@- Lower priority values gives higher priority.
-@- Priority Order:
(#@) Lowest priority.
(#@) Lowest hardware priority (IRQn position).
(#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority()
(#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ()
-@- Negative value of IRQn_Type are not allowed.
[..]
*** How to configure Systick using CORTEX HAL driver ***
========================================================
[..]
Setup SysTick Timer for time base.
(+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
is a CMSIS function that:
(++) Configures the SysTick Reload register with value passed as function parameter.
(++) Configures the SysTick IRQ priority to the lowest value (0x03).
(++) Resets the SysTick Counter register.
(++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
(++) Enables the SysTick Interrupt.
(++) Starts the SysTick Counter.
(+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
HAL_SYSTICK_Config() function call. The HAL_SYSTICK_CLKSourceConfig() macro is defined
inside the stm32f0xx_hal_cortex.h file.
(+) You can change the SysTick IRQ priority by calling the
HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
(+) To adjust the SysTick time base, use the following formula:
Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
(++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
(++) Reload Value should not exceed 0xFFFFFF
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup CORTEX CORTEX
* @brief CORTEX CORTEX HAL module driver
* @{
*/
#ifdef HAL_CORTEX_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..]
This section provides the CORTEX HAL driver functions allowing to configure Interrupts
Systick functionalities
@endverbatim
* @{
*/
/**
* @brief Sets the priority of an interrupt.
* @param IRQn External interrupt number .
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to stm32f0xx.h file)
* @param PreemptPriority The preemption priority for the IRQn channel.
* This parameter can be a value between 0 and 3.
* A lower priority value indicates a higher priority
* @param SubPriority the subpriority level for the IRQ channel.
* with stm32f0xx devices, this parameter is a dummy value and it is ignored, because
* no subpriority supported in Cortex M0 based products.
* @retval None
*/
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
{
/* Check the parameters */
assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
NVIC_SetPriority(IRQn,PreemptPriority);
}
/**
* @brief Enables a device specific interrupt in the NVIC interrupt controller.
* @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
* function should be called before.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
* @retval None
*/
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Enable interrupt */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Disables a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
* @retval None
*/
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Disable interrupt */
NVIC_DisableIRQ(IRQn);
}
/**
* @brief Initiates a system reset request to reset the MCU.
* @retval None
*/
void HAL_NVIC_SystemReset(void)
{
/* System Reset */
NVIC_SystemReset();
}
/**
* @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
* Counter is in free running mode to generate periodic interrupts.
* @param TicksNumb Specifies the ticks Number of ticks between two interrupts.
* @retval status: - 0 Function succeeded.
* - 1 Function failed.
*/
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
{
return SysTick_Config(TicksNumb);
}
/**
* @}
*/
/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
* @brief Cortex control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the CORTEX
(NVIC, SYSTICK) functionalities.
@endverbatim
* @{
*/
/**
* @brief Gets the priority of an interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
* @retval None
*/
uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn)
{
/* Get priority for Cortex-M system or device specific interrupts */
return NVIC_GetPriority(IRQn);
}
/**
* @brief Sets Pending bit of an external interrupt.
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
* @retval None
*/
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Set interrupt pending */
NVIC_SetPendingIRQ(IRQn);
}
/**
* @brief Gets Pending Interrupt (reads the pending register in the NVIC
* and returns the pending bit for the specified interrupt).
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if pending else 0 */
return NVIC_GetPendingIRQ(IRQn);
}
/**
* @brief Clears the pending bit of an external interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
* @retval None
*/
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Clear pending interrupt */
NVIC_ClearPendingIRQ(IRQn);
}
/**
* @brief Configures the SysTick clock source.
* @param CLKSource specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
* @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
* @retval None
*/
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
{
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}
else
{
SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
}
}
/**
* @brief This function handles SYSTICK interrupt request.
* @retval None
*/
void HAL_SYSTICK_IRQHandler(void)
{
HAL_SYSTICK_Callback();
}
/**
* @brief SYSTICK callback.
* @retval None
*/
__weak void HAL_SYSTICK_Callback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_SYSTICK_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CORTEX_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,901 @@
/**
******************************************************************************
* @file stm32f0xx_hal_dma.c
* @author MCD Application Team
* @brief DMA HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Direct Memory Access (DMA) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State and errors functions
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Enable and configure the peripheral to be connected to the DMA Channel
(except for internal SRAM / FLASH memories: no initialization is
necessary). Please refer to Reference manual for connection between peripherals
and DMA requests .
(#) For a given Channel, program the required configuration through the following parameters:
Transfer Direction, Source and Destination data formats,
Circular or Normal mode, Channel Priority level, Source and Destination Increment mode,
using HAL_DMA_Init() function.
(#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
detection.
(#) Use HAL_DMA_Abort() function to abort the current transfer
-@- In Memory-to-Memory transfer mode, Circular mode is not allowed.
*** Polling mode IO operation ***
=================================
[..]
(+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source
address and destination address and the Length of data to be transferred
(+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this
case a fixed Timeout can be configured by User depending from his application.
*** Interrupt mode IO operation ***
===================================
[..]
(+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
(+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()
(+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of
Source address and destination address and the Length of data to be transferred.
In this case the DMA interrupt is configured
(+) Use HAL_DMA_Channel_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
(+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can
add his own function by customization of function pointer XferCpltCallback and
XferErrorCallback (i.e a member of DMA handle structure).
*** DMA HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in DMA HAL driver.
[..]
(@) You can refer to the DMA HAL driver header file for more useful macros
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup DMA DMA
* @brief DMA HAL module driver
* @{
*/
#ifdef HAL_DMA_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup DMA_Private_Functions DMA Private Functions
* @{
*/
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
static void DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup DMA_Exported_Functions DMA Exported Functions
* @{
*/
/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to initialize the DMA Channel source
and destination addresses, incrementation and data sizes, transfer direction,
circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
[..]
The HAL_DMA_Init() function follows the DMA configuration procedures as described in
reference manual.
@endverbatim
* @{
*/
/**
* @brief Initialize the DMA according to the specified
* parameters in the DMA_InitTypeDef and initialize the associated handle.
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma)
{
uint32_t tmp = 0U;
/* Check the DMA handle allocation */
if(NULL == hdma)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
assert_param(IS_DMA_MODE(hdma->Init.Mode));
assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
/* Get the CR register value */
tmp = hdma->Instance->CCR;
/* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR bits */
tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \
DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \
DMA_CCR_DIR));
/* Prepare the DMA Channel configuration */
tmp |= hdma->Init.Direction |
hdma->Init.PeriphInc | hdma->Init.MemInc |
hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment |
hdma->Init.Mode | hdma->Init.Priority;
/* Write to DMA Channel CR register */
hdma->Instance->CCR = tmp;
/* Initialize DmaBaseAddress and ChannelIndex parameters used
by HAL_DMA_IRQHandler() and HAL_DMA_PollForTransfer() */
DMA_CalcBaseAndBitshift(hdma);
/* Initialise the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Initialize the DMA state*/
hdma->State = HAL_DMA_STATE_READY;
/* Allocate lock resource and initialize it */
hdma->Lock = HAL_UNLOCKED;
return HAL_OK;
}
/**
* @brief DeInitialize the DMA peripheral
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma)
{
/* Check the DMA handle allocation */
if(NULL == hdma)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
/* Disable the selected DMA Channelx */
hdma->Instance->CCR &= ~DMA_CCR_EN;
/* Reset DMA Channel control register */
hdma->Instance->CCR = 0U;
/* Reset DMA Channel Number of Data to Transfer register */
hdma->Instance->CNDTR = 0U;
/* Reset DMA Channel peripheral address register */
hdma->Instance->CPAR = 0U;
/* Reset DMA Channel memory address register */
hdma->Instance->CMAR = 0U;
/* Get DMA Base Address */
DMA_CalcBaseAndBitshift(hdma);
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
/* Clean callbacks */
hdma->XferCpltCallback = NULL;
hdma->XferHalfCpltCallback = NULL;
hdma->XferErrorCallback = NULL;
hdma->XferAbortCallback = NULL;
/* Reset the error code */
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Reset the DMA state */
hdma->State = HAL_DMA_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions
* @brief I/O operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the source, destination address and data length and Start DMA transfer
(+) Configure the source, destination address and data length and
Start DMA transfer with interrupt
(+) Abort DMA transfer
(+) Poll for transfer complete
(+) Handle DMA interrupt request
@endverbatim
* @{
*/
/**
* @brief Start the DMA Transfer.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress The source memory Buffer address
* @param DstAddress The destination memory Buffer address
* @param DataLength The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Disable the peripheral */
hdma->Instance->CCR &= ~DMA_CCR_EN;
/* Configure the source, destination address and the data length */
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the Peripheral */
hdma->Instance->CCR |= DMA_CCR_EN;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdma);
/* Remain BUSY */
status = HAL_BUSY;
}
return status;
}
/**
* @brief Start the DMA Transfer with interrupt enabled.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress The source memory Buffer address
* @param DstAddress The destination memory Buffer address
* @param DataLength The length of data to be transferred from source to destination
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
/* Change DMA peripheral state */
hdma->State = HAL_DMA_STATE_BUSY;
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
/* Disable the peripheral */
hdma->Instance->CCR &= ~DMA_CCR_EN;
/* Configure the source, destination address and the data length */
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
/* Enable the transfer complete, & transfer error interrupts */
/* Half transfer interrupt is optional: enable it only if associated callback is available */
if(NULL != hdma->XferHalfCpltCallback )
{
hdma->Instance->CCR |= (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
}
else
{
hdma->Instance->CCR |= (DMA_IT_TC | DMA_IT_TE);
hdma->Instance->CCR &= ~DMA_IT_HT;
}
/* Enable the Peripheral */
hdma->Instance->CCR |= DMA_CCR_EN;
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdma);
/* Remain BUSY */
status = HAL_BUSY;
}
return status;
}
/**
* @brief Abort the DMA Transfer.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
{
if(hdma->State != HAL_DMA_STATE_BUSY)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
else
{
/* Disable DMA IT */
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
/* Disable the channel */
hdma->Instance->CCR &= ~DMA_CCR_EN;
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_FLAG_GL1 << hdma->ChannelIndex);
}
/* Change the DMA state*/
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
/**
* @brief Abort the DMA Transfer in Interrupt mode.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)
{
HAL_StatusTypeDef status = HAL_OK;
if(HAL_DMA_STATE_BUSY != hdma->State)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
status = HAL_ERROR;
}
else
{
/* Disable DMA IT */
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
/* Disable the channel */
hdma->Instance->CCR &= ~DMA_CCR_EN;
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
/* Call User Abort callback */
if(hdma->XferAbortCallback != NULL)
{
hdma->XferAbortCallback(hdma);
}
}
return status;
}
/**
* @brief Polling for transfer complete.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param CompleteLevel Specifies the DMA level complete.
* @param Timeout Timeout duration.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout)
{
uint32_t temp;
uint32_t tickstart = 0U;
if(HAL_DMA_STATE_BUSY != hdma->State)
{
/* no transfer ongoing */
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
/* Polling mode not supported in circular mode */
if (RESET != (hdma->Instance->CCR & DMA_CCR_CIRC))
{
hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Get the level transfer complete flag */
if(HAL_DMA_FULL_TRANSFER == CompleteLevel)
{
/* Transfer Complete flag */
temp = DMA_FLAG_TC1 << hdma->ChannelIndex;
}
else
{
/* Half Transfer Complete flag */
temp = DMA_FLAG_HT1 << hdma->ChannelIndex;
}
/* Get tick */
tickstart = HAL_GetTick();
while(RESET == (hdma->DmaBaseAddress->ISR & temp))
{
if(RESET != (hdma->DmaBaseAddress->ISR & (DMA_FLAG_TE1 << hdma->ChannelIndex)))
{
/* When a DMA transfer error occurs */
/* A hardware clear of its EN bits is performed */
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
/* Update error code */
hdma->ErrorCode = HAL_DMA_ERROR_TE;
/* Change the DMA state */
hdma->State= HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
/* Update error code */
hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT;
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
return HAL_ERROR;
}
}
}
if(HAL_DMA_FULL_TRANSFER == CompleteLevel)
{
/* Clear the transfer complete flag */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_TC1 << hdma->ChannelIndex;
/* The selected Channelx EN bit is cleared (DMA is disabled and
all transfers are complete) */
hdma->State = HAL_DMA_STATE_READY;
}
else
{
/* Clear the half transfer complete flag */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_HT1 << hdma->ChannelIndex;
}
/* Process unlocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
/**
* @brief Handle DMA interrupt request.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval None
*/
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
{
uint32_t flag_it = hdma->DmaBaseAddress->ISR;
uint32_t source_it = hdma->Instance->CCR;
/* Half Transfer Complete Interrupt management ******************************/
if ((RESET != (flag_it & (DMA_FLAG_HT1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_HT)))
{
/* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
{
/* Disable the half transfer interrupt */
hdma->Instance->CCR &= ~DMA_IT_HT;
}
/* Clear the half transfer complete flag */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_HT1 << hdma->ChannelIndex;
/* DMA peripheral state is not updated in Half Transfer */
/* State is updated only in Transfer Complete case */
if(hdma->XferHalfCpltCallback != NULL)
{
/* Half transfer callback */
hdma->XferHalfCpltCallback(hdma);
}
}
/* Transfer Complete Interrupt management ***********************************/
else if ((RESET != (flag_it & (DMA_FLAG_TC1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TC)))
{
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
{
/* Disable the transfer complete & transfer error interrupts */
/* if the DMA mode is not CIRCULAR */
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_TE);
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
}
/* Clear the transfer complete flag */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_TC1 << hdma->ChannelIndex;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
if(hdma->XferCpltCallback != NULL)
{
/* Transfer complete callback */
hdma->XferCpltCallback(hdma);
}
}
/* Transfer Error Interrupt management ***************************************/
else if (( RESET != (flag_it & (DMA_FLAG_TE1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TE)))
{
/* When a DMA transfer error occurs */
/* A hardware clear of its EN bits is performed */
/* Then, disable all DMA interrupts */
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
/* Update error code */
hdma->ErrorCode = HAL_DMA_ERROR_TE;
/* Change the DMA state */
hdma->State = HAL_DMA_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hdma);
if(hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
}
/**
* @brief Register callbacks
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @param CallbackID User Callback identifer
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
* @param pCallback pointer to private callback function which has pointer to
* a DMA_HandleTypeDef structure as parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)( DMA_HandleTypeDef * _hdma))
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
switch (CallbackID)
{
case HAL_DMA_XFER_CPLT_CB_ID:
hdma->XferCpltCallback = pCallback;
break;
case HAL_DMA_XFER_HALFCPLT_CB_ID:
hdma->XferHalfCpltCallback = pCallback;
break;
case HAL_DMA_XFER_ERROR_CB_ID:
hdma->XferErrorCallback = pCallback;
break;
case HAL_DMA_XFER_ABORT_CB_ID:
hdma->XferAbortCallback = pCallback;
break;
default:
status = HAL_ERROR;
break;
}
}
else
{
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdma);
return status;
}
/**
* @brief UnRegister callbacks
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @param CallbackID User Callback identifer
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hdma);
if(HAL_DMA_STATE_READY == hdma->State)
{
switch (CallbackID)
{
case HAL_DMA_XFER_CPLT_CB_ID:
hdma->XferCpltCallback = NULL;
break;
case HAL_DMA_XFER_HALFCPLT_CB_ID:
hdma->XferHalfCpltCallback = NULL;
break;
case HAL_DMA_XFER_ERROR_CB_ID:
hdma->XferErrorCallback = NULL;
break;
case HAL_DMA_XFER_ABORT_CB_ID:
hdma->XferAbortCallback = NULL;
break;
case HAL_DMA_XFER_ALL_CB_ID:
hdma->XferCpltCallback = NULL;
hdma->XferHalfCpltCallback = NULL;
hdma->XferErrorCallback = NULL;
hdma->XferAbortCallback = NULL;
break;
default:
status = HAL_ERROR;
break;
}
}
else
{
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdma);
return status;
}
/**
* @}
*/
/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### State and Errors functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Check the DMA state
(+) Get error code
@endverbatim
* @{
*/
/**
* @brief Returns the DMA state.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval HAL state
*/
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma)
{
return hdma->State;
}
/**
* @brief Return the DMA error code
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @retval DMA Error Code
*/
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma)
{
return hdma->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup DMA_Private_Functions
* @{
*/
/**
* @brief Set the DMA Transfer parameters.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Channel.
* @param SrcAddress The source memory Buffer address
* @param DstAddress The destination memory Buffer address
* @param DataLength The length of data to be transferred from source to destination
* @retval HAL status
*/
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
{
/* Clear all flags */
hdma->DmaBaseAddress->IFCR = (DMA_FLAG_GL1 << hdma->ChannelIndex);
/* Configure DMA Channel data length */
hdma->Instance->CNDTR = DataLength;
/* Memory to Peripheral */
if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
{
/* Configure DMA Channel destination address */
hdma->Instance->CPAR = DstAddress;
/* Configure DMA Channel source address */
hdma->Instance->CMAR = SrcAddress;
}
/* Peripheral to Memory */
else
{
/* Configure DMA Channel source address */
hdma->Instance->CPAR = SrcAddress;
/* Configure DMA Channel destination address */
hdma->Instance->CMAR = DstAddress;
}
}
/**
* @brief set the DMA base address and channel index depending on DMA instance
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA Stream.
* @retval None
*/
static void DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma)
{
#if defined (DMA2)
/* calculation of the channel index */
if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1))
{
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U;
hdma->DmaBaseAddress = DMA1;
}
else
{
/* DMA2 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U;
hdma->DmaBaseAddress = DMA2;
}
#else
/* calculation of the channel index */
/* DMA1 */
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U;
hdma->DmaBaseAddress = DMA1;
#endif
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_DMA_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,549 @@
/**
******************************************************************************
* @file stm32f0xx_hal_exti.c
* @author MCD Application Team
* @brief EXTI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Extended Interrupts and events controller (EXTI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
@verbatim
==============================================================================
##### EXTI Peripheral features #####
==============================================================================
[..]
(+) Each Exti line can be configured within this driver.
(+) Exti line can be configured in 3 different modes
(++) Interrupt
(++) Event
(++) Both of them
(+) Configurable Exti lines can be configured with 3 different triggers
(++) Rising
(++) Falling
(++) Both of them
(+) When set in interrupt mode, configurable Exti lines have two different
interrupts pending registers which allow to distinguish which transition
occurs:
(++) Rising edge pending interrupt
(++) Falling
(+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
be selected through multiplexer.
##### How to use this driver #####
==============================================================================
[..]
(#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
(++) Choose the interrupt line number by setting "Line" member from
EXTI_ConfigTypeDef structure.
(++) Configure the interrupt and/or event mode using "Mode" member from
EXTI_ConfigTypeDef structure.
(++) For configurable lines, configure rising and/or falling trigger
"Trigger" member from EXTI_ConfigTypeDef structure.
(++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
member from GPIO_InitTypeDef structure.
(#) Get current Exti configuration of a dedicated line using
HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
(++) Provide exiting handle as first parameter.
(++) Provide which callback will be registered using one value from
EXTI_CallbackIDTypeDef.
(++) Provide callback function pointer.
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_GetPending().
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @addtogroup EXTI
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rule:
* Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
* of bounds [0,3] in following API :
* HAL_EXTI_SetConfigLine
* HAL_EXTI_GetConfigLine
* HAL_EXTI_ClearConfigLine
*/
#ifdef HAL_EXTI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_Exported_Functions
* @{
*/
/** @addtogroup EXTI_Exported_Functions_Group1
* @brief Configuration functions
*
@verbatim
===============================================================================
##### Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Set configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on EXTI configuration to be set.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_EXTI_LINE(pExtiConfig->Line));
assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
/* Assign line number to handle */
hexti->Line = pExtiConfig->Line;
/* Compute line mask */
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* Configure triggers for configurable lines */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
/* Configure rising trigger */
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u)
{
EXTI->RTSR |= maskline;
}
else
{
EXTI->RTSR &= ~maskline;
}
/* Configure falling trigger */
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u)
{
EXTI->FTSR |= maskline;
}
else
{
EXTI->FTSR &= ~maskline;
}
/* Configure gpio port selection in case of gpio exti line */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
regval |= (pExtiConfig->GPIOSel << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
SYSCFG->EXTICR[linepos >> 2u] = regval;
}
}
/* Configure interrupt mode : read current mode */
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u)
{
EXTI->IMR |= maskline;
}
else
{
EXTI->IMR &= ~maskline;
}
/* Configure event mode : read current mode */
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u)
{
EXTI->EMR |= maskline;
}
else
{
EXTI->EMR &= ~maskline;
}
return HAL_OK;
}
/**
* @brief Get configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on structure to store Exti configuration.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* Store handle line number to configuration structure */
pExtiConfig->Line = hexti->Line;
/* Compute line mask */
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Get core mode : interrupt */
/* Check if selected line is enable */
if ((EXTI->IMR & maskline) != 0x00u)
{
pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
}
else
{
pExtiConfig->Mode = EXTI_MODE_NONE;
}
/* Get event mode */
/* Check if selected line is enable */
if ((EXTI->EMR & maskline) != 0x00u)
{
pExtiConfig->Mode |= EXTI_MODE_EVENT;
}
/* Get default Trigger and GPIOSel configuration */
pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
pExtiConfig->GPIOSel = 0x00u;
/* 2] Get trigger for configurable lines : rising */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
/* Check if configuration of selected line is enable */
if ((EXTI->RTSR & maskline) != 0x00u)
{
pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
}
/* Get falling configuration */
/* Check if configuration of selected line is enable */
if ((EXTI->FTSR & maskline) != 0x00u)
{
pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
}
/* Get Gpio port selection for gpio lines */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
pExtiConfig->GPIOSel = ((regval << (SYSCFG_EXTICR1_EXTI1_Pos * (3uL - (linepos & 0x03u)))) >> 24);
}
}
return HAL_OK;
}
/**
* @brief Clear whole configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* compute line mask */
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Clear interrupt mode */
EXTI->IMR = (EXTI->IMR & ~maskline);
/* 2] Clear event mode */
EXTI->EMR = (EXTI->EMR & ~maskline);
/* 3] Clear triggers in case of configurable lines */
if ((hexti->Line & EXTI_CONFIG) != 0x00u)
{
EXTI->RTSR = (EXTI->RTSR & ~maskline);
EXTI->FTSR = (EXTI->FTSR & ~maskline);
/* Get Gpio port selection for gpio lines */
if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = SYSCFG->EXTICR[linepos >> 2u];
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
SYSCFG->EXTICR[linepos >> 2u] = regval;
}
}
return HAL_OK;
}
/**
* @brief Register callback for a dedicated Exti line.
* @param hexti Exti handle.
* @param CallbackID User callback identifier.
* This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
* @param pPendingCbfn function pointer to be stored as callback.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void))
{
HAL_StatusTypeDef status = HAL_OK;
switch (CallbackID)
{
case HAL_EXTI_COMMON_CB_ID:
hexti->PendingCallback = pPendingCbfn;
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Store line number as handle private field.
* @param hexti Exti handle.
* @param ExtiLine Exti line number.
* This parameter can be from 0 to @ref EXTI_LINE_NB.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(ExtiLine));
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
else
{
/* Store line number as handle private field */
hexti->Line = ExtiLine;
return HAL_OK;
}
}
/**
* @}
*/
/** @addtogroup EXTI_Exported_Functions_Group2
* @brief EXTI IO functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Handle EXTI interrupt request.
* @param hexti Exti handle.
* @retval none.
*/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti)
{
uint32_t regval;
uint32_t maskline;
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Get pending bit */
regval = (EXTI->PR & maskline);
if (regval != 0x00u)
{
/* Clear pending bit */
EXTI->PR = maskline;
/* Call callback */
if (hexti->PendingCallback != NULL)
{
hexti->PendingCallback();
}
}
}
/**
* @brief Get interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be checked.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval 1 if interrupt is pending else 0.
*/
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* Compute line mask */
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* return 1 if bit is set else 0 */
regval = ((EXTI->PR & maskline) >> linepos);
return regval;
}
/**
* @brief Clear interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be clear.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING_FALLING
* This parameter is kept for compatibility with other series.
* @retval None.
*/
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Clear Pending bit */
EXTI->PR = maskline;
}
/**
* @brief Generate a software interrupt for a dedicated line.
* @param hexti Exti handle.
* @retval None.
*/
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti)
{
uint32_t maskline;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* Compute line mask */
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Generate Software interrupt */
EXTI->SWIER = maskline;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_EXTI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,694 @@
/**
******************************************************************************
* @file stm32f0xx_hal_flash.c
* @author MCD Application Team
* @brief FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the internal FLASH memory:
* + Program operations functions
* + Memory Control functions
* + Peripheral State functions
*
@verbatim
==============================================================================
##### FLASH peripheral features #####
==============================================================================
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
to the Flash memory. It implements the erase and program Flash memory operations
and the read and write protection mechanisms.
[..] The Flash memory interface accelerates code execution with a system of instruction
prefetch.
[..] The FLASH main features are:
(+) Flash memory read operations
(+) Flash memory program/erase operations
(+) Read / write protections
(+) Prefetch on I-Code
(+) Option Bytes programming
##### How to use this driver #####
==============================================================================
[..]
This driver provides functions and macros to configure and program the FLASH
memory of all STM32F0xx devices.
(#) FLASH Memory I/O Programming functions: this group includes all needed
functions to erase and program the main memory:
(++) Lock and Unlock the FLASH interface
(++) Erase function: Erase page, erase all pages
(++) Program functions: half word, word and doubleword
(#) FLASH Option Bytes Programming functions: this group includes all needed
functions to manage the Option Bytes:
(++) Lock and Unlock the Option Bytes
(++) Set/Reset the write protection
(++) Set the Read protection Level
(++) Program the user Option Bytes
(++) Launch the Option Bytes loader
(++) Erase Option Bytes
(++) Program the data Option Bytes
(++) Get the Write protection.
(++) Get the user option bytes.
(#) Interrupts and flags management functions : this group
includes all needed functions to:
(++) Handle FLASH interrupts
(++) Wait for last FLASH operation according to its status
(++) Get error flag status
[..] In addition to these function, this driver includes a set of macros allowing
to handle the following operations:
(+) Set/Get the latency
(+) Enable/Disable the prefetch buffer
(+) Enable/Disable the FLASH interrupts
(+) Monitor the FLASH flags status
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/** @defgroup FLASH FLASH
* @brief FLASH HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FLASH_Private_Constants FLASH Private Constants
* @{
*/
/**
* @}
*/
/* Private macro ---------------------------- ---------------------------------*/
/** @defgroup FLASH_Private_Macros FLASH Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup FLASH_Private_Variables FLASH Private Variables
* @{
*/
/* Variables used for Erase pages under interruption*/
FLASH_ProcessTypeDef pFlash;
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASH_Private_Functions FLASH Private Functions
* @{
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
static void FLASH_SetErrorCode(void);
extern void FLASH_PageErase(uint32_t PageAddress);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
* @{
*/
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
* @brief Programming operation functions
*
@verbatim
@endverbatim
* @{
*/
/**
* @brief Program halfword, word or double word at a specified address
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @note FLASH should be previously erased before new programming (only exception to this
* is when 0x0000 is programmed)
*
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address Specifie the address to be programmed.
* @param Data Specifie the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint8_t index = 0U;
uint8_t nbiterations = 0U;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
/* Program halfword (16-bit) at a specified address. */
nbiterations = 1U;
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
/* Program word (32-bit = 2*16-bit) at a specified address. */
nbiterations = 2U;
}
else
{
/* Program double word (64-bit = 4*16-bit) at a specified address. */
nbiterations = 4U;
}
for (index = 0U; index < nbiterations; index++)
{
FLASH_Program_HalfWord((Address + (2U*index)), (uint16_t)(Data >> (16U*index)));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
/* In case of error, stop programming procedure */
if (status != HAL_OK)
{
break;
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Program halfword, word or double word at a specified address with interrupt enabled.
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address Specifie the address to be programmed.
* @param Data Specifie the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
pFlash.Address = Address;
pFlash.Data = Data;
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
/* Program halfword (16-bit) at a specified address. */
pFlash.DataRemaining = 1U;
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
/* Program word (32-bit : 2*16-bit) at a specified address. */
pFlash.DataRemaining = 2U;
}
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
/* Program double word (64-bit : 4*16-bit) at a specified address. */
pFlash.DataRemaining = 4U;
}
/* Program halfword (16-bit) at a specified address. */
FLASH_Program_HalfWord(Address, (uint16_t)Data);
return status;
}
/**
* @brief This function handles FLASH interrupt request.
* @retval None
*/
void HAL_FLASH_IRQHandler(void)
{
uint32_t addresstmp = 0U;
/* Check FLASH operation error flags */
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
{
/* Return the faulty address */
addresstmp = pFlash.Address;
/* Reset address */
pFlash.Address = 0xFFFFFFFFU;
/* Save the Error code */
FLASH_SetErrorCode();
/* FLASH error interrupt user callback */
HAL_FLASH_OperationErrorCallback(addresstmp);
/* Stop the procedure ongoing */
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
/* Check FLASH End of Operation flag */
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
/* Process can continue only if no error detected */
if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
{
/* Nb of pages to erased can be decreased */
pFlash.DataRemaining--;
/* Check if there are still pages to erase */
if(pFlash.DataRemaining != 0U)
{
addresstmp = pFlash.Address;
/*Indicate user which sector has been erased */
HAL_FLASH_EndOfOperationCallback(addresstmp);
/*Increment sector number*/
addresstmp = pFlash.Address + FLASH_PAGE_SIZE;
pFlash.Address = addresstmp;
/* If the erase operation is completed, disable the PER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
FLASH_PageErase(addresstmp);
}
else
{
/* No more pages to Erase, user callback can be called. */
/* Reset Sector and stop Erase pages procedure */
pFlash.Address = addresstmp = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(addresstmp);
}
}
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/* Operation is completed, disable the MER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
/* MassErase ended. Return the selected bank */
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(0);
/* Stop Mass Erase procedure*/
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
else
{
/* Nb of 16-bit data to program can be decreased */
pFlash.DataRemaining--;
/* Check if there are still 16-bit data to program */
if(pFlash.DataRemaining != 0U)
{
/* Increment address to 16-bit */
pFlash.Address += 2;
addresstmp = pFlash.Address;
/* Shift to have next 16-bit data */
pFlash.Data = (pFlash.Data >> 16U);
/* Operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
}
else
{
/* Program ended. Return the selected address */
/* FLASH EOP interrupt user callback */
if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U);
}
else
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U);
}
/* Reset Address and stop Program procedure */
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
}
}
if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
{
/* Operation is completed, disable the PG, PER and MER Bits */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
/* Disable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
}
/**
* @brief FLASH end of operation interrupt callback
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* - Mass Erase: No return value expected
* - Pages Erase: Address of the page which has been erased
* (if 0xFFFFFFFF, it means that all the selected pages have been erased)
* - Program: Address which was selected for data program
* @retval none
*/
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
*/
}
/**
* @brief FLASH operation error interrupt callback
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* - Mass Erase: No return value expected
* - Pages Erase: Address of the page which returned an error
* - Program: Address which was selected for data program
* @retval none
*/
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
* @brief management functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
memory operations.
@endverbatim
* @{
*/
/**
* @brief Unlock the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
{
HAL_StatusTypeDef status = HAL_OK;
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* Verify Flash is unlocked */
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Locks the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Lock(void)
{
/* Set the LOCK Bit to lock the FLASH Registers access */
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
return HAL_OK;
}
/**
* @brief Unlock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
{
if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE))
{
/* Authorizes the Option Byte register programming */
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Lock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
{
/* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
return HAL_OK;
}
/**
* @brief Launch the option byte loading.
* @note This function will reset automatically the MCU.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
{
/* Set the OBL_Launch bit to launch the option byte loading */
SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH);
/* Wait for last operation to be completed */
return(FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE));
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral errors functions
* @brief Peripheral errors functions
*
@verbatim
===============================================================================
##### Peripheral Errors functions #####
===============================================================================
[..]
This subsection permit to get in run-time errors of the FLASH peripheral.
@endverbatim
* @{
*/
/**
* @brief Get the specific FLASH error flag.
* @retval FLASH_ErrorCode The returned value can be:
* @ref FLASH_Error_Codes
*/
uint32_t HAL_FLASH_GetError(void)
{
return pFlash.ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/**
* @brief Program a half-word (16-bit) at a specified address.
* @param Address specify the address to be programmed.
* @param Data specify the data to be programmed.
* @retval None
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Proceed to program the new data */
SET_BIT(FLASH->CR, FLASH_CR_PG);
/* Write data in the address */
*(__IO uint16_t*)Address = Data;
}
/**
* @brief Wait for a FLASH operation to complete.
* @param Timeout maximum flash operation timeout
* @retval HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
{
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
Even if the FLASH operation fails, the BUSY flag will be reset and an error
flag will be set */
uint32_t tickstart = HAL_GetTick();
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY))
{
if (Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
/* Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||
__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
{
/*Save the error code*/
FLASH_SetErrorCode();
return HAL_ERROR;
}
/* There is no error flag set */
return HAL_OK;
}
/**
* @brief Set the specific FLASH error flag.
* @retval None
*/
static void FLASH_SetErrorCode(void)
{
uint32_t flags = 0U;
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
flags |= FLASH_FLAG_WRPERR;
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG;
flags |= FLASH_FLAG_PGERR;
}
/* Clear FLASH error pending bits */
__HAL_FLASH_CLEAR_FLAG(flags);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,984 @@
/**
******************************************************************************
* @file stm32f0xx_hal_flash_ex.c
* @author MCD Application Team
* @brief Extended FLASH HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the FLASH peripheral:
* + Extended Initialization/de-initialization functions
* + Extended I/O operation functions
* + Extended Peripheral Control functions
*
@verbatim
==============================================================================
##### Flash peripheral extended features #####
==============================================================================
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure and program the FLASH memory
of all STM32F0xxx devices. It includes
(++) Set/Reset the write protection
(++) Program the user Option Bytes
(++) Get the Read protection Level
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/** @addtogroup FLASH
* @{
*/
/** @addtogroup FLASH_Private_Variables
* @{
*/
/* Variables used for Erase pages under interruption*/
extern FLASH_ProcessTypeDef pFlash;
/**
* @}
*/
/**
* @}
*/
/** @defgroup FLASHEx FLASHEx
* @brief FLASH HAL Extension module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FLASHEx_Private_Constants FLASHEx Private Constants
* @{
*/
#define FLASH_POSITION_IWDGSW_BIT 8U
#define FLASH_POSITION_OB_USERDATA0_BIT 16U
#define FLASH_POSITION_OB_USERDATA1_BIT 24U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup FLASHEx_Private_Macros FLASHEx Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
* @{
*/
/* Erase operations */
static void FLASH_MassErase(void);
void FLASH_PageErase(uint32_t PageAddress);
/* Option bytes control */
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage);
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage);
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel);
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig);
static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data);
static uint32_t FLASH_OB_GetWRP(void);
static uint32_t FLASH_OB_GetRDP(void);
static uint8_t FLASH_OB_GetUser(void);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
* @{
*/
/** @defgroup FLASHEx_Exported_Functions_Group1 FLASHEx Memory Erasing functions
* @brief FLASH Memory Erasing functions
*
@verbatim
==============================================================================
##### FLASH Erasing Programming functions #####
==============================================================================
[..] The FLASH Memory Erasing functions, includes the following functions:
(+) HAL_FLASHEx_Erase: return only when erase has been done
(+) HAL_FLASHEx_Erase_IT: end of erase is done when HAL_FLASH_EndOfOperationCallback
is called with parameter 0xFFFFFFFF
[..] Any operation of erase should follow these steps:
(#) Call the HAL_FLASH_Unlock() function to enable the flash control register and
program memory access.
(#) Call the desired function to erase page.
(#) Call the HAL_FLASH_Lock() to disable the flash program memory access
(recommended to protect the FLASH memory against possible unwanted operation).
@endverbatim
* @{
*/
/**
* @brief Perform a mass erase or erase the specified FLASH memory pages
* @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
* must be called before.
* Call the @ref HAL_FLASH_Lock() to disable the flash memory access
* (recommended to protect the FLASH memory against possible unwanted operation)
* @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @param[out] PageError pointer to variable that
* contains the configuration information on faulty page in case of error
* (0xFFFFFFFF means that all the pages have been correctly erased)
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint32_t address = 0U;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/* Mass Erase requested for Bank1 */
/* Wait for last operation to be completed */
if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
{
/*Mass erase to be done*/
FLASH_MassErase();
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the erase operation is completed, disable the MER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
}
}
else
{
/* Page Erase is requested */
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
/* Page Erase requested on address located on bank1 */
/* Wait for last operation to be completed */
if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
{
/*Initialization of PageError variable*/
*PageError = 0xFFFFFFFFU;
/* Erase page by page to be done*/
for(address = pEraseInit->PageAddress;
address < ((pEraseInit->NbPages * FLASH_PAGE_SIZE) + pEraseInit->PageAddress);
address += FLASH_PAGE_SIZE)
{
FLASH_PageErase(address);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the erase operation is completed, disable the PER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
if (status != HAL_OK)
{
/* In case of error, stop erase procedure and return the faulty address */
*PageError = address;
break;
}
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Perform a mass erase or erase the specified FLASH memory pages with interrupt enabled
* @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
* must be called before.
* Call the @ref HAL_FLASH_Lock() to disable the flash memory access
* (recommended to protect the FLASH memory against possible unwanted operation)
* @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* If procedure already ongoing, reject the next one */
if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/*Mass erase to be done*/
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE;
FLASH_MassErase();
}
else
{
/* Erase by page to be done*/
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
pFlash.ProcedureOnGoing = FLASH_PROC_PAGEERASE;
pFlash.DataRemaining = pEraseInit->NbPages;
pFlash.Address = pEraseInit->PageAddress;
/*Erase 1st page and wait for IT*/
FLASH_PageErase(pEraseInit->PageAddress);
}
return status;
}
/**
* @}
*/
/** @defgroup FLASHEx_Exported_Functions_Group2 Option Bytes Programming functions
* @brief Option Bytes Programming functions
*
@verbatim
==============================================================================
##### Option Bytes Programming functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
option bytes operations.
@endverbatim
* @{
*/
/**
* @brief Erases the FLASH option bytes.
* @note This functions erases all option bytes except the Read protection (RDP).
* The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
* The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
* (system reset will occur)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FLASHEx_OBErase(void)
{
uint8_t rdptmp = OB_RDP_LEVEL_0;
HAL_StatusTypeDef status = HAL_ERROR;
/* Get the actual read protection Option Byte value */
rdptmp = FLASH_OB_GetRDP();
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* If the previous operation is completed, proceed to erase the option bytes */
SET_BIT(FLASH->CR, FLASH_CR_OPTER);
SET_BIT(FLASH->CR, FLASH_CR_STRT);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the erase operation is completed, disable the OPTER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
if(status == HAL_OK)
{
/* Restore the last read protection Option Byte value */
status = FLASH_OB_RDP_LevelConfig(rdptmp);
}
}
/* Return the erase status */
return status;
}
/**
* @brief Program option bytes
* @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
* The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
* (system reset will occur)
*
* @param pOBInit pointer to an FLASH_OBInitStruct structure that
* contains the configuration information for the programming.
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
/* Write protection configuration */
if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
{
assert_param(IS_WRPSTATE(pOBInit->WRPState));
if (pOBInit->WRPState == OB_WRPSTATE_ENABLE)
{
/* Enable of Write protection on the selected page */
status = FLASH_OB_EnableWRP(pOBInit->WRPPage);
}
else
{
/* Disable of Write protection on the selected page */
status = FLASH_OB_DisableWRP(pOBInit->WRPPage);
}
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
}
/* Read protection configuration */
if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP)
{
status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel);
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
}
/* USER configuration */
if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER)
{
status = FLASH_OB_UserConfig(pOBInit->USERConfig);
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
}
/* DATA configuration*/
if((pOBInit->OptionType & OPTIONBYTE_DATA) == OPTIONBYTE_DATA)
{
status = FLASH_OB_ProgramData(pOBInit->DATAAddress, pOBInit->DATAData);
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Get the Option byte configuration
* @param pOBInit pointer to an FLASH_OBInitStruct structure that
* contains the configuration information for the programming.
*
* @retval None
*/
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
{
pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER;
/*Get WRP*/
pOBInit->WRPPage = FLASH_OB_GetWRP();
/*Get RDP Level*/
pOBInit->RDPLevel = FLASH_OB_GetRDP();
/*Get USER*/
pOBInit->USERConfig = FLASH_OB_GetUser();
}
/**
* @brief Get the Option byte user data
* @param DATAAdress Address of the option byte DATA
* This parameter can be one of the following values:
* @arg @ref OB_DATA_ADDRESS_DATA0
* @arg @ref OB_DATA_ADDRESS_DATA1
* @retval Value programmed in USER data
*/
uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress)
{
uint32_t value = 0U;
if (DATAAdress == OB_DATA_ADDRESS_DATA0)
{
/* Get value programmed in OB USER Data0 */
value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA0) >> FLASH_POSITION_OB_USERDATA0_BIT;
}
else
{
/* Get value programmed in OB USER Data1 */
value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA1) >> FLASH_POSITION_OB_USERDATA1_BIT;
}
return value;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FLASHEx_Private_Functions
* @{
*/
/**
* @brief Full erase of FLASH memory Bank
*
* @retval None
*/
static void FLASH_MassErase(void)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Only bank1 will be erased*/
SET_BIT(FLASH->CR, FLASH_CR_MER);
SET_BIT(FLASH->CR, FLASH_CR_STRT);
}
/**
* @brief Enable the write protection of the desired pages
* @note An option byte erase is done automatically in this function.
* @note When the memory read protection level is selected (RDP level = 1),
* it is not possible to program or erase the flash page i if
* debug features are connected or boot code is executed in RAM, even if nWRPi = 1
*
* @param WriteProtectPage specifies the page(s) to be write protected.
* The value of this parameter depend on device used within the same series
* @retval HAL status
*/
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage)
{
HAL_StatusTypeDef status = HAL_OK;
uint16_t WRP0_Data = 0xFFFFU;
#if defined(OB_WRP1_WRP1)
uint16_t WRP1_Data = 0xFFFFU;
#endif /* OB_WRP1_WRP1 */
#if defined(OB_WRP2_WRP2)
uint16_t WRP2_Data = 0xFFFFU;
#endif /* OB_WRP2_WRP2 */
#if defined(OB_WRP3_WRP3)
uint16_t WRP3_Data = 0xFFFFU;
#endif /* OB_WRP3_WRP3 */
/* Check the parameters */
assert_param(IS_OB_WRP(WriteProtectPage));
/* Get current write protected pages and the new pages to be protected ******/
WriteProtectPage = (uint32_t)(~((~FLASH_OB_GetWRP()) | WriteProtectPage));
#if defined(OB_WRP_PAGES0TO15MASK)
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
#elif defined(OB_WRP_PAGES0TO31MASK)
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
#endif /* OB_WRP_PAGES0TO31MASK */
#if defined(OB_WRP_PAGES16TO31MASK)
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U);
#elif defined(OB_WRP_PAGES32TO63MASK)
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U);
#endif /* OB_WRP_PAGES32TO63MASK */
#if defined(OB_WRP_PAGES32TO47MASK)
WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U);
#endif /* OB_WRP_PAGES32TO47MASK */
#if defined(OB_WRP_PAGES48TO63MASK)
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24U);
#elif defined(OB_WRP_PAGES48TO127MASK)
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U);
#endif /* OB_WRP_PAGES48TO63MASK */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* To be able to write again option byte, need to perform a option byte erase */
status = HAL_FLASHEx_OBErase();
if (status == HAL_OK)
{
/* Enable write protection */
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
#if defined(OB_WRP0_WRP0)
if(WRP0_Data != 0xFFU)
{
OB->WRP0 &= WRP0_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP0_WRP0 */
#if defined(OB_WRP1_WRP1)
if((status == HAL_OK) && (WRP1_Data != 0xFFU))
{
OB->WRP1 &= WRP1_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP1_WRP1 */
#if defined(OB_WRP2_WRP2)
if((status == HAL_OK) && (WRP2_Data != 0xFFU))
{
OB->WRP2 &= WRP2_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP2_WRP2 */
#if defined(OB_WRP3_WRP3)
if((status == HAL_OK) && (WRP3_Data != 0xFFU))
{
OB->WRP3 &= WRP3_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP3_WRP3 */
/* if the program operation is completed, disable the OPTPG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
}
}
return status;
}
/**
* @brief Disable the write protection of the desired pages
* @note An option byte erase is done automatically in this function.
* @note When the memory read protection level is selected (RDP level = 1),
* it is not possible to program or erase the flash page i if
* debug features are connected or boot code is executed in RAM, even if nWRPi = 1
*
* @param WriteProtectPage specifies the page(s) to be write unprotected.
* The value of this parameter depend on device used within the same series
* @retval HAL status
*/
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
{
HAL_StatusTypeDef status = HAL_OK;
uint16_t WRP0_Data = 0xFFFFU;
#if defined(OB_WRP1_WRP1)
uint16_t WRP1_Data = 0xFFFFU;
#endif /* OB_WRP1_WRP1 */
#if defined(OB_WRP2_WRP2)
uint16_t WRP2_Data = 0xFFFFU;
#endif /* OB_WRP2_WRP2 */
#if defined(OB_WRP3_WRP3)
uint16_t WRP3_Data = 0xFFFFU;
#endif /* OB_WRP3_WRP3 */
/* Check the parameters */
assert_param(IS_OB_WRP(WriteProtectPage));
/* Get current write protected pages and the new pages to be unprotected ******/
WriteProtectPage = (FLASH_OB_GetWRP() | WriteProtectPage);
#if defined(OB_WRP_PAGES0TO15MASK)
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
#elif defined(OB_WRP_PAGES0TO31MASK)
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
#endif /* OB_WRP_PAGES0TO31MASK */
#if defined(OB_WRP_PAGES16TO31MASK)
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U);
#elif defined(OB_WRP_PAGES32TO63MASK)
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U);
#endif /* OB_WRP_PAGES32TO63MASK */
#if defined(OB_WRP_PAGES32TO47MASK)
WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U);
#endif /* OB_WRP_PAGES32TO47MASK */
#if defined(OB_WRP_PAGES48TO63MASK)
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24U);
#elif defined(OB_WRP_PAGES48TO127MASK)
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U);
#endif /* OB_WRP_PAGES48TO63MASK */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* To be able to write again option byte, need to perform a option byte erase */
status = HAL_FLASHEx_OBErase();
if (status == HAL_OK)
{
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
#if defined(OB_WRP0_WRP0)
if(WRP0_Data != 0xFFU)
{
OB->WRP0 &= WRP0_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP0_WRP0 */
#if defined(OB_WRP1_WRP1)
if((status == HAL_OK) && (WRP1_Data != 0xFFU))
{
OB->WRP1 &= WRP1_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP1_WRP1 */
#if defined(OB_WRP2_WRP2)
if((status == HAL_OK) && (WRP2_Data != 0xFFU))
{
OB->WRP2 &= WRP2_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP2_WRP2 */
#if defined(OB_WRP3_WRP3)
if((status == HAL_OK) && (WRP3_Data != 0xFFU))
{
OB->WRP3 &= WRP3_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
}
#endif /* OB_WRP3_WRP3 */
/* if the program operation is completed, disable the OPTPG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
}
}
return status;
}
/**
* @brief Set the read protection level.
* @param ReadProtectLevel specifies the read protection level.
* This parameter can be one of the following values:
* @arg @ref OB_RDP_LEVEL_0 No protection
* @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
* @arg @ref OB_RDP_LEVEL_2 Full chip protection
* @note Warning: When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0
* @retval HAL status
*/
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_OB_RDP_LEVEL(ReadProtectLevel));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* If the previous operation is completed, proceed to erase the option bytes */
SET_BIT(FLASH->CR, FLASH_CR_OPTER);
SET_BIT(FLASH->CR, FLASH_CR_STRT);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the erase operation is completed, disable the OPTER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
if(status == HAL_OK)
{
/* Enable the Option Bytes Programming operation */
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
WRITE_REG(OB->RDP, ReadProtectLevel);
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* if the program operation is completed, disable the OPTPG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
}
}
return status;
}
/**
* @brief Program the FLASH User Option Byte.
* @note Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
* @param UserConfig The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), nBOOT1(Bit4),
* VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6).
* For few devices, following option bytes are available: nBOOT0(Bit3) & BOOT_SEL(Bit7).
* @retval HAL status
*/
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_OB_IWDG_SOURCE((UserConfig&OB_IWDG_SW)));
assert_param(IS_OB_STOP_SOURCE((UserConfig&OB_STOP_NO_RST)));
assert_param(IS_OB_STDBY_SOURCE((UserConfig&OB_STDBY_NO_RST)));
assert_param(IS_OB_BOOT1((UserConfig&OB_BOOT1_SET)));
assert_param(IS_OB_VDDA_ANALOG((UserConfig&OB_VDDA_ANALOG_ON)));
assert_param(IS_OB_SRAM_PARITY((UserConfig&OB_SRAM_PARITY_RESET)));
#if defined(FLASH_OBR_BOOT_SEL)
assert_param(IS_OB_BOOT_SEL((UserConfig&OB_BOOT_SEL_SET)));
assert_param(IS_OB_BOOT0((UserConfig&OB_BOOT0_SET)));
#endif /* FLASH_OBR_BOOT_SEL */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Enable the Option Bytes Programming operation */
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
#if defined(FLASH_OBR_BOOT_SEL)
OB->USER = UserConfig;
#else
OB->USER = (UserConfig | 0x88U);
#endif
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* if the program operation is completed, disable the OPTPG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
}
return status;
}
/**
* @brief Programs a half word at a specified Option Byte Data address.
* @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
* The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
* (system reset will occur)
* Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
* @param Address specifies the address to be programmed.
* This parameter can be 0x1FFFF804 or 0x1FFFF806.
* @param Data specifies the data to be programmed.
* @retval HAL status
*/
static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Check the parameters */
assert_param(IS_OB_DATA_ADDRESS(Address));
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if(status == HAL_OK)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Enables the Option Bytes Programming operation */
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
*(__IO uint16_t*)Address = Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the OPTPG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
}
/* Return the Option Byte Data Program Status */
return status;
}
/**
* @brief Return the FLASH Write Protection Option Bytes value.
* @retval The FLASH Write Protection Option Bytes value
*/
static uint32_t FLASH_OB_GetWRP(void)
{
/* Return the FLASH write protection Register value */
return (uint32_t)(READ_REG(FLASH->WRPR));
}
/**
* @brief Returns the FLASH Read Protection level.
* @retval FLASH RDP level
* This parameter can be one of the following values:
* @arg @ref OB_RDP_LEVEL_0 No protection
* @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
* @arg @ref OB_RDP_LEVEL_2 Full chip protection
*/
static uint32_t FLASH_OB_GetRDP(void)
{
uint32_t tmp_reg;
/* Read RDP level bits */
tmp_reg = READ_BIT(FLASH->OBR, (FLASH_OBR_RDPRT1 | FLASH_OBR_RDPRT2));
if (tmp_reg == 0U)
{
return OB_RDP_LEVEL_0;
}
else if ((tmp_reg & FLASH_OBR_RDPRT2) == FLASH_OBR_RDPRT2)
{
return OB_RDP_LEVEL_2;
}
else
{
return OB_RDP_LEVEL_1;
}
}
/**
* @brief Return the FLASH User Option Byte value.
* @retval The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), nBOOT1(Bit4),
* VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6).
* For few devices, following option bytes are available: nBOOT0(Bit3) & BOOT_SEL(Bit7).
*/
static uint8_t FLASH_OB_GetUser(void)
{
/* Return the User Option Byte */
return (uint8_t)((READ_REG(FLASH->OBR) & FLASH_OBR_USER) >> FLASH_POSITION_IWDGSW_BIT);
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FLASH
* @{
*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/**
* @brief Erase the specified FLASH memory page
* @param PageAddress FLASH page to erase
* The value of this parameter depend on device used within the same series
*
* @retval None
*/
void FLASH_PageErase(uint32_t PageAddress)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Proceed to erase the page */
SET_BIT(FLASH->CR, FLASH_CR_PER);
WRITE_REG(FLASH->AR, PageAddress);
SET_BIT(FLASH->CR, FLASH_CR_STRT);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,540 @@
/**
******************************************************************************
* @file stm32f0xx_hal_gpio.c
* @author MCD Application Team
* @brief GPIO HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (GPIO) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
@verbatim
==============================================================================
##### GPIO Peripheral features #####
==============================================================================
[..]
(+) Each port bit of the general-purpose I/O (GPIO) ports can be individually
configured by software in several modes:
(++) Input mode
(++) Analog mode
(++) Output mode
(++) Alternate function mode
(++) External interrupt/event lines
(+) During and just after reset, the alternate functions and external interrupt
lines are not active and the I/O ports are configured in input floating mode.
(+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be
activated or not.
(+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull
type and the IO speed can be selected depending on the VDD value.
(+) The microcontroller IO pins are connected to onboard peripherals/modules through a
multiplexer that allows only one peripheral alternate function (AF) connected
to an IO pin at a time. In this way, there can be no conflict between peripherals
sharing the same IO pin.
(+) All ports have external interrupt/event capability. To use external interrupt
lines, the port must be configured in input mode. All available GPIO pins are
connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
(+) The external interrupt/event controller consists of up to 28 edge detectors
(16 lines are connected to GPIO) for generating event/interrupt requests (each
input line can be independently configured to select the type (interrupt or event)
and the corresponding trigger event (rising or falling or both). Each line can
also be masked independently.
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the GPIO AHB clock using the following function : __HAL_RCC_GPIOx_CLK_ENABLE().
(#) Configure the GPIO pin(s) using HAL_GPIO_Init().
(++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
(++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
structure.
(++) In case of Output or alternate function mode selection: the speed is
configured through "Speed" member from GPIO_InitTypeDef structure.
(++) In alternate mode is selection, the alternate function connected to the IO
is configured through "Alternate" member from GPIO_InitTypeDef structure.
(++) Analog mode is required when a pin is to be used as ADC channel
or DAC output.
(++) In case of external interrupt/event selection the "Mode" member from
GPIO_InitTypeDef structure select the type (interrupt or event) and
the corresponding trigger event (rising or falling or both).
(#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
HAL_NVIC_EnableIRQ().
(#) HAL_GPIO_DeInit allows to set register values to their reset value. It's also
recommended to use it to unconfigure pin which was used as an external interrupt
or in event mode. That's the only way to reset corresponding bit in EXTI & SYSCFG
registers.
(#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
(#) To set/reset the level of a pin configured in output mode use
HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
(#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
(#) During and just after reset, the alternate functions are not
active and the GPIO pins are configured in input floating mode (except JTAG
pins).
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
priority over the GPIO function.
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
general purpose PF0 and PF1, respectively, when the HSE oscillator is off.
The HSE has priority over the GPIO function.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup GPIO GPIO
* @brief GPIO HAL module driver
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rules:
* Rule-18.1_d - Medium: Array pointer `GPIOx' is accessed with index [..,..]
* which may be out of array bounds [..,UNKNOWN] in following APIs:
* HAL_GPIO_Init
* HAL_GPIO_DeInit
*/
#ifdef HAL_GPIO_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @addtogroup GPIO_Private_Constants GPIO Private Constants
* @{
*/
#define GPIO_NUMBER 16U
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
* @{
*/
/** @defgroup GPIO_Exported_Functions_Group1 Initialization/de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
* @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains
* the configuration information for the specified GPIO peripheral.
* @retval None
*/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t temp;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
/* Configure the port pins */
while (((GPIO_Init->Pin) >> position) != 0x00u)
{
/* Get current io position */
iocurrent = (GPIO_Init->Pin) & (1uL << position);
if (iocurrent != 0x00u)
{
/*--------------------- GPIO Mode Configuration ------------------------*/
/* In case of Output or Alternate function mode selection */
if(((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) ||
((GPIO_Init->Mode & GPIO_MODE) == MODE_AF))
{
/* Check the Speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
/* Configure the IO Speed */
temp = GPIOx->OSPEEDR;
temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2u));
temp |= (GPIO_Init->Speed << (position * 2u));
GPIOx->OSPEEDR = temp;
/* Configure the IO Output Type */
temp = GPIOx->OTYPER;
temp &= ~(GPIO_OTYPER_OT_0 << position) ;
temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_Pos) << position);
GPIOx->OTYPER = temp;
}
if((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG)
{
/* Check the Pull parameter */
assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
/* Activate the Pull-up or Pull down resistor for the current IO */
temp = GPIOx->PUPDR;
temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2u));
temp |= ((GPIO_Init->Pull) << (position * 2u));
GPIOx->PUPDR = temp;
}
/* In case of Alternate function mode selection */
if((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)
{
/* Check the Alternate function parameters */
assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
assert_param(IS_GPIO_AF(GPIO_Init->Alternate));
/* Configure Alternate function mapped with the current IO */
temp = GPIOx->AFR[position >> 3u];
temp &= ~(0xFu << ((position & 0x07u) * 4u));
temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * 4u));
GPIOx->AFR[position >> 3u] = temp;
}
/* Configure IO Direction mode (Input, Output, Alternate or Analog) */
temp = GPIOx->MODER;
temp &= ~(GPIO_MODER_MODER0 << (position * 2u));
temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2u));
GPIOx->MODER = temp;
/*--------------------- EXTI Mode Configuration ------------------------*/
/* Configure the External Interrupt or event for the current IO */
if((GPIO_Init->Mode & EXTI_MODE) != 0x00u)
{
/* Enable SYSCFG Clock */
__HAL_RCC_SYSCFG_CLK_ENABLE();
temp = SYSCFG->EXTICR[position >> 2u];
temp &= ~(0x0FuL << (4u * (position & 0x03u)));
temp |= (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u)));
SYSCFG->EXTICR[position >> 2u] = temp;
/* Clear EXTI line configuration */
temp = EXTI->IMR;
temp &= ~(iocurrent);
if((GPIO_Init->Mode & EXTI_IT) != 0x00u)
{
temp |= iocurrent;
}
EXTI->IMR = temp;
temp = EXTI->EMR;
temp &= ~(iocurrent);
if((GPIO_Init->Mode & EXTI_EVT) != 0x00u)
{
temp |= iocurrent;
}
EXTI->EMR = temp;
/* Clear Rising Falling edge configuration */
temp = EXTI->RTSR;
temp &= ~(iocurrent);
if((GPIO_Init->Mode & TRIGGER_RISING) != 0x00u)
{
temp |= iocurrent;
}
EXTI->RTSR = temp;
temp = EXTI->FTSR;
temp &= ~(iocurrent);
if((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00u)
{
temp |= iocurrent;
}
EXTI->FTSR = temp;
}
}
position++;
}
}
/**
* @brief De-initialize the GPIOx peripheral registers to their default reset values.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t tmp;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Configure the port pins */
while ((GPIO_Pin >> position) != 0x00u)
{
/* Get current io position */
iocurrent = (GPIO_Pin) & (1uL << position);
if (iocurrent != 0x00u)
{
/*------------------------- EXTI Mode Configuration --------------------*/
/* Clear the External Interrupt or Event for the current IO */
tmp = SYSCFG->EXTICR[position >> 2u];
tmp &= (0x0FuL << (4u * (position & 0x03u)));
if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u))))
{
/* Clear EXTI line configuration */
EXTI->IMR &= ~((uint32_t)iocurrent);
EXTI->EMR &= ~((uint32_t)iocurrent);
/* Clear Rising Falling edge configuration */
EXTI->RTSR &= ~((uint32_t)iocurrent);
EXTI->FTSR &= ~((uint32_t)iocurrent);
/* Configure the External Interrupt or event for the current IO */
tmp = 0x0FuL << (4u * (position & 0x03u));
SYSCFG->EXTICR[position >> 2u] &= ~tmp;
}
/*------------------------- GPIO Mode Configuration --------------------*/
/* Configure IO Direction in Input Floating Mode */
GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2u));
/* Configure the default Alternate Function in current IO */
GPIOx->AFR[position >> 3u] &= ~(0xFu << ((uint32_t)(position & 0x07u) * 4u)) ;
/* Deactivate the Pull-up and Pull-down resistor for the current IO */
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2u));
/* Configure the default value IO Output Type */
GPIOx->OTYPER &= ~(GPIO_OTYPER_OT_0 << position) ;
/* Configure the default value for IO Speed */
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2u));
}
position++;
}
}
/**
* @}
*/
/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
* @brief GPIO Read, Write, Toggle, Lock and EXTI management functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Read the specified input port pin.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
* @param GPIO_Pin specifies the port bit to read.
* This parameter can be GPIO_PIN_x where x can be (0..15).
* @retval The input port pin value.
*/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
GPIO_PinState bitstatus;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET)
{
bitstatus = GPIO_PIN_SET;
}
else
{
bitstatus = GPIO_PIN_RESET;
}
return bitstatus;
}
/**
* @brief Set or clear the selected data port bit.
* @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
*
* @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32F0 family
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
* @param PinState specifies the value to be written to the selected bit.
* This parameter can be one of the GPIO_PinState enum values:
* @arg GPIO_PIN_RESET: to clear the port pin
* @arg GPIO_PIN_SET: to set the port pin
* @retval None
*/
void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
{
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));
if (PinState != GPIO_PIN_RESET)
{
GPIOx->BSRR = (uint32_t)GPIO_Pin;
}
else
{
GPIOx->BRR = (uint32_t)GPIO_Pin;
}
}
/**
* @brief Toggle the specified GPIO pin.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
* @param GPIO_Pin specifies the pin to be toggled.
* @retval None
*/
void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
uint32_t odr;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* get current Ouput Data Register value */
odr = GPIOx->ODR;
/* Set selected pins that were at low level, and reset ones that were high */
GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
}
/**
* @brief Locks GPIO Pins configuration registers.
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
* @note The configuration of the locked GPIO pins can no longer be modified
* until the next reset.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
* @param GPIO_Pin specifies the port bits to be locked.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{
__IO uint32_t tmp = GPIO_LCKR_LCKK;
/* Check the parameters */
assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Apply lock key write sequence */
SET_BIT(tmp, GPIO_Pin);
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Read LCKK register. This read is mandatory to complete key lock sequence */
tmp = GPIOx->LCKR;
/* read again in order to confirm lock is active */
if((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u)
{
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Handle EXTI interrupt request.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
{
/* EXTI line interrupt detected */
if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u)
{
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
HAL_GPIO_EXTI_Callback(GPIO_Pin);
}
}
/**
* @brief EXTI line detection callback.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(GPIO_Pin);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_GPIO_EXTI_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_GPIO_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,365 @@
/**
******************************************************************************
* @file stm32f0xx_hal_i2c_ex.c
* @author MCD Application Team
* @brief I2C Extended HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of I2C Extended peripheral:
* + Filter Mode Functions
* + WakeUp Mode Functions
* + FastModePlus Functions
*
@verbatim
==============================================================================
##### I2C peripheral Extended features #####
==============================================================================
[..] Comparing to other previous devices, the I2C interface for STM32F0xx
devices contains the following additional features
(+) Possibility to disable or enable Analog Noise Filter
(+) Use of a configured Digital Noise Filter
(+) Disable or enable wakeup from Stop mode(s)
(+) Disable or enable Fast Mode Plus
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure Noise Filter and Wake Up Feature
(#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter()
(#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter()
(#) Configure the enable or disable of I2C Wake Up Mode using the functions :
(++) HAL_I2CEx_EnableWakeUp()
(++) HAL_I2CEx_DisableWakeUp()
(#) Configure the enable or disable of fast mode plus driving capability using the functions :
(++) HAL_I2CEx_EnableFastModePlus()
(++) HAL_I2CEx_DisableFastModePlus()
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup I2CEx I2CEx
* @brief I2C Extended HAL module driver
* @{
*/
#ifdef HAL_I2C_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions
* @{
*/
/** @defgroup I2CEx_Exported_Functions_Group1 Filter Mode Functions
* @brief Filter Mode Functions
*
@verbatim
===============================================================================
##### Filter Mode Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Noise Filters
@endverbatim
* @{
*/
/**
* @brief Configure I2C Analog noise filter.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @param AnalogFilter New state of the Analog filter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Reset I2Cx ANOFF bit */
hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF);
/* Set analog filter bit*/
hi2c->Instance->CR1 |= AnalogFilter;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Configure I2C Digital noise filter.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter)
{
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Get the old register value */
tmpreg = hi2c->Instance->CR1;
/* Reset I2Cx DNF bits [11:8] */
tmpreg &= ~(I2C_CR1_DNF);
/* Set I2Cx DNF coefficient */
tmpreg |= DigitalFilter << 8U;
/* Store the new register value */
hi2c->Instance->CR1 = tmpreg;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
#if defined(I2C_CR1_WUPEN)
/** @defgroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions
* @brief WakeUp Mode Functions
*
@verbatim
===============================================================================
##### WakeUp Mode Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Wake Up Feature
@endverbatim
* @{
*/
/**
* @brief Enable I2C wakeup from Stop mode(s).
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c)
{
/* Check the parameters */
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Enable wakeup from stop mode */
hi2c->Instance->CR1 |= I2C_CR1_WUPEN;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Disable I2C wakeup from Stop mode(s).
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c)
{
/* Check the parameters */
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Enable wakeup from stop mode */
hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN);
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
#endif /* I2C_CR1_WUPEN */
/** @defgroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions
* @brief Fast Mode Plus Functions
*
@verbatim
===============================================================================
##### Fast Mode Plus Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Fast Mode Plus
@endverbatim
* @{
*/
/**
* @brief Enable the I2C fast mode plus driving capability.
* @param ConfigFastModePlus Selects the pin.
* This parameter can be one of the @ref I2CEx_FastModePlus values
* @note For I2C1, fast mode plus driving capability can be enabled on all selected
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
* on each one of the following pins PB6, PB7, PB8 and PB9.
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
* can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
* @note For all I2C2 pins fast mode plus driving capability can be enabled
* only by using I2C_FASTMODEPLUS_I2C2 parameter.
* @retval None
*/
void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus)
{
/* Check the parameter */
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
/* Enable SYSCFG clock */
__HAL_RCC_SYSCFG_CLK_ENABLE();
/* Enable fast mode plus driving capability for selected pin */
SET_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
}
/**
* @brief Disable the I2C fast mode plus driving capability.
* @param ConfigFastModePlus Selects the pin.
* This parameter can be one of the @ref I2CEx_FastModePlus values
* @note For I2C1, fast mode plus driving capability can be disabled on all selected
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
* on each one of the following pins PB6, PB7, PB8 and PB9.
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
* can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
* @note For all I2C2 pins fast mode plus driving capability can be disabled
* only by using I2C_FASTMODEPLUS_I2C2 parameter.
* @retval None
*/
void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus)
{
/* Check the parameter */
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
/* Enable SYSCFG clock */
__HAL_RCC_SYSCFG_CLK_ENABLE();
/* Disable fast mode plus driving capability for selected pin */
CLEAR_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,454 @@
/**
******************************************************************************
* @file stm32f0xx_hal_pwr.c
* @author MCD Application Team
* @brief PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Initialization/de-initialization function
* + Peripheral Control function
*
@verbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup PWR PWR
* @brief PWR HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
After reset, the backup domain (RTC registers, RTC backup data
registers) is protected against possible unwanted
write accesses.
To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
__HAL_RCC_PWR_CLK_ENABLE() macro.
(+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
@endverbatim
* @{
*/
/**
* @brief Deinitializes the PWR peripheral registers to their default reset values.
* @retval None
*/
void HAL_PWR_DeInit(void)
{
__HAL_RCC_PWR_FORCE_RESET();
__HAL_RCC_PWR_RELEASE_RESET();
}
/**
* @brief Enables access to the backup domain (RTC registers, RTC
* backup data registers when present).
* @note If the HSE divided by 32 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @retval None
*/
void HAL_PWR_EnableBkUpAccess(void)
{
PWR->CR |= (uint32_t)PWR_CR_DBP;
}
/**
* @brief Disables access to the backup domain (RTC registers, RTC
* backup data registers when present).
* @note If the HSE divided by 32 is used as the RTC clock, the
* Backup Domain Access should be kept enabled.
* @retval None
*/
void HAL_PWR_DisableBkUpAccess(void)
{
PWR->CR &= ~((uint32_t)PWR_CR_DBP);
}
/**
* @}
*/
/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @brief Low Power modes configuration functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
*** WakeUp pin configuration ***
================================
[..]
(+) WakeUp pin is used to wakeup the system from Standby mode. This pin is
forced in input pull down configuration and is active on rising edges.
(+) There are two WakeUp pins, and up to eight Wakeup pins on STM32F07x & STM32F09x devices.
(++)WakeUp Pin 1 on PA.00.
(++)WakeUp Pin 2 on PC.13.
(++)WakeUp Pin 3 on PE.06.(STM32F07x/STM32F09x)
(++)WakeUp Pin 4 on PA.02.(STM32F07x/STM32F09x)
(++)WakeUp Pin 5 on PC.05.(STM32F07x/STM32F09x)
(++)WakeUp Pin 6 on PB.05.(STM32F07x/STM32F09x)
(++)WakeUp Pin 7 on PB.15.(STM32F07x/STM32F09x)
(++)WakeUp Pin 8 on PF.02.(STM32F07x/STM32F09x)
*** Low Power modes configuration ***
=====================================
[..]
The devices feature 3 low-power modes:
(+) Sleep mode: Cortex-M0 core stopped, peripherals kept running.
(+) Stop mode: all clocks are stopped, regulator running, regulator
in low power mode
(+) Standby mode: 1.2V domain powered off (mode not available on STM32F0x8 devices).
*** Sleep mode ***
==================
[..]
(+) Entry:
The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
functions with
(++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
(++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
(+) Exit:
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
controller (NVIC) can wake up the device from Sleep mode.
*** Stop mode ***
=================
[..]
In Stop mode, all clocks in the 1.8V domain are stopped, the PLL, the HSI,
and the HSE RC oscillators are disabled. Internal SRAM and register contents
are preserved.
The voltage regulator can be configured either in normal or low-power mode.
To minimize the consumption.
(+) Entry:
The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI )
function with:
(++) Main regulator ON.
(++) Low Power regulator ON.
(++) PWR_STOPENTRY_WFI: enter STOP mode with WFI instruction
(++) PWR_STOPENTRY_WFE: enter STOP mode with WFE instruction
(+) Exit:
(++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
(++) Some specific communication peripherals (CEC, USART, I2C) interrupts,
when programmed in wakeup mode (the peripheral must be
programmed in wakeup mode and the corresponding interrupt vector
must be enabled in the NVIC)
*** Standby mode ***
====================
[..]
The Standby mode allows to achieve the lowest power consumption. It is based
on the Cortex-M0 deep sleep mode, with the voltage regulator disabled.
The 1.8V domain is consequently powered off. The PLL, the HSI oscillator and
the HSE oscillator are also switched off. SRAM and register contents are lost
except for the RTC registers, RTC backup registers and Standby circuitry.
The voltage regulator is OFF.
(+) Entry:
(++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
(+) Exit:
(++) WKUP pin rising edge, RTC alarm (Alarm A), RTC wakeup,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
*** Auto-wakeup (AWU) from low-power mode ***
=============================================
[..]
The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
Wakeup event, a tamper event, a time-stamp event, or a comparator event,
without depending on an external interrupt (Auto-wakeup mode).
(+) RTC auto-wakeup (AWU) from the Stop and Standby modes
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
(++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
is necessary to configure the RTC to detect the tamper or time stamp event using the
HAL_RTC_SetTimeStamp_IT() or HAL_RTC_SetTamper_IT() functions.
(++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to
configure the RTC to generate the RTC WakeUp event using the HAL_RTC_SetWakeUpTimer_IT() function.
(+) Comparator auto-wakeup (AWU) from the Stop mode
(++) To wake up from the Stop mode with a comparator wakeup event, it is necessary to:
(+++) Configure the EXTI Line associated with the comparator (example EXTI Line 22 for comparator 2)
to be sensitive to to the selected edges (falling, rising or falling
and rising) (Interrupt or Event modes) using the EXTI_Init() function.
(+++) Configure the comparator to generate the event.
@endverbatim
* @{
*/
/**
* @brief Enables the WakeUp PINx functionality.
* @param WakeUpPinx Specifies the Power Wake-Up pin to enable.
* This parameter can be value of :
* @ref PWREx_WakeUp_Pins
* @retval None
*/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameters */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Enable the EWUPx pin */
SET_BIT(PWR->CSR, WakeUpPinx);
}
/**
* @brief Disables the WakeUp PINx functionality.
* @param WakeUpPinx Specifies the Power Wake-Up pin to disable.
* This parameter can be values of :
* @ref PWREx_WakeUp_Pins
* @retval None
*/
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
{
/* Check the parameters */
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
/* Disable the EWUPx pin */
CLEAR_BIT(PWR->CSR, WakeUpPinx);
}
/**
* @brief Enters Sleep mode.
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
* @param Regulator Specifies the regulator state in SLEEP mode.
* On STM32F0 devices, this parameter is a dummy value and it is ignored
* as regulator can't be modified in this mode. Parameter is kept for platform
* compatibility.
* @param SLEEPEntry Specifies if SLEEP mode is entered with WFI or WFE instruction.
* When WFI entry is used, tick interrupt have to be disabled if not desired as
* the interrupt wake up source.
* This parameter can be one of the following values:
* @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
* @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
/* Clear SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
/* Select SLEEP mode entry -------------------------------------------------*/
if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
}
/**
* @brief Enters STOP mode.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note When exiting Stop mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock.
* @note When the voltage regulator operates in low power mode, an additional
* startup delay is incurred when waking up from Stop mode.
* By keeping the internal regulator ON during Stop mode, the consumption
* is higher although the startup time is reduced.
* @param Regulator Specifies the regulator state in STOP mode.
* This parameter can be one of the following values:
* @arg PWR_MAINREGULATOR_ON: STOP mode with regulator ON
* @arg PWR_LOWPOWERREGULATOR_ON: STOP mode with low power regulator ON
* @param STOPEntry specifies if STOP mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg PWR_STOPENTRY_WFI:Enter STOP mode with WFI instruction
* @arg PWR_STOPENTRY_WFE: Enter STOP mode with WFE instruction
* @retval None
*/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Select the regulator state in STOP mode ---------------------------------*/
tmpreg = PWR->CR;
/* Clear PDDS and LPDS bits */
tmpreg &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS);
/* Set LPDS bit according to Regulator value */
tmpreg |= Regulator;
/* Store the new value */
PWR->CR = tmpreg;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* Select STOP mode entry --------------------------------------------------*/
if(STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
}
/**
* @brief Enters STANDBY mode.
* @note In Standby mode, all I/O pins are high impedance except for:
* - Reset pad (still available)
* - RTC alternate function pins if configured for tamper, time-stamp, RTC
* Alarm out, or RTC clock calibration out.
* - WKUP pins if enabled.
* STM32F0x8 devices, the Stop mode is available, but it is
* aningless to distinguish between voltage regulator in Low power
* mode and voltage regulator in Run mode because the regulator
* not used and the core is supplied directly from an external source.
* Consequently, the Standby mode is not available on those devices.
* @retval None
*/
void HAL_PWR_EnterSTANDBYMode(void)
{
/* Select STANDBY mode */
PWR->CR |= (uint32_t)PWR_CR_PDDS;
/* Set SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
}
/**
* @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* Setting this bit is useful when the processor is expected to run only on
* interruptions handling.
* @retval None
*/
void HAL_PWR_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
* @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
* re-enters SLEEP mode when an interruption handling is over.
* @retval None
*/
void HAL_PWR_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enables CORTEX M4 SEVONPEND bit.
* @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_EnableSEVOnPend(void)
{
/* Set SEVONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Disables CORTEX M4 SEVONPEND bit.
* @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
* WFE to wake up when an interrupt moves from inactive to pended.
* @retval None
*/
void HAL_PWR_DisableSEVOnPend(void)
{
/* Clear SEVONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,274 @@
/**
******************************************************************************
* @file stm32f0xx_hal_pwr_ex.c
* @author MCD Application Team
* @brief Extended PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Extended Initialization and de-initialization functions
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup PWREx PWREx
* @brief PWREx HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWREx_Private_Constants PWREx Private Constants
* @{
*/
#define PVD_MODE_IT (0x00010000U)
#define PVD_MODE_EVT (0x00020000U)
#define PVD_RISING_EDGE (0x00000001U)
#define PVD_FALLING_EDGE (0x00000002U)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup PWREx_Exported_Functions PWREx Exported Functions
* @{
*/
/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended Control Functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral extended control functions #####
===============================================================================
*** PVD configuration ***
=========================
[..]
(+) The PVD is used to monitor the VDD power supply by comparing it to a
threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
than the PVD threshold. This event is internally connected to the EXTI
line16 and can generate an interrupt if enabled. This is done through
HAL_PWR_ConfigPVD(), HAL_PWR_EnablePVD() functions.
(+) The PVD is stopped in Standby mode.
-@- PVD is not available on STM32F030x4/x6/x8
*** VDDIO2 Monitor Configuration ***
====================================
[..]
(+) VDDIO2 monitor is used to monitor the VDDIO2 power supply by comparing it
to VREFInt Voltage
(+) This monitor is internally connected to the EXTI line31
and can generate an interrupt if enabled. This is done through
HAL_PWREx_EnableVddio2Monitor() function.
-@- VDDIO2 is available on STM32F07x/09x/04x
@endverbatim
* @{
*/
#if defined (STM32F031x6) || defined (STM32F051x8) || \
defined (STM32F071xB) || defined (STM32F091xC) || \
defined (STM32F042x6) || defined (STM32F072xB)
/**
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
* @param sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
* information for the PVD.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage threshold corresponding to each
* detection level.
* @retval None
*/
void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
{
/* Check the parameters */
assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
/* Set PLS[7:5] bits according to PVDLevel value */
MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVD_EXTI_DISABLE_EVENT();
__HAL_PWR_PVD_EXTI_DISABLE_IT();
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
/* Configure interrupt mode */
if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
{
__HAL_PWR_PVD_EXTI_ENABLE_IT();
}
/* Configure event mode */
if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
{
__HAL_PWR_PVD_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
}
if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
{
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
}
}
/**
* @brief Enables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_EnablePVD(void)
{
PWR->CR |= (uint32_t)PWR_CR_PVDE;
}
/**
* @brief Disables the Power Voltage Detector(PVD).
* @retval None
*/
void HAL_PWR_DisablePVD(void)
{
PWR->CR &= ~((uint32_t)PWR_CR_PVDE);
}
/**
* @brief This function handles the PWR PVD interrupt request.
* @note This API should be called under the PVD_IRQHandler() or PVD_VDDIO2_IRQHandler().
* @retval None
*/
void HAL_PWR_PVD_IRQHandler(void)
{
/* Check PWR exti flag */
if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
/* Clear PWR Exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
}
}
/**
* @brief PWR PVD interrupt callback
* @retval None
*/
__weak void HAL_PWR_PVDCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PWR_PVDCallback could be implemented in the user file
*/
}
#endif /* defined (STM32F031x6) || defined (STM32F051x8) || */
/* defined (STM32F071xB) || defined (STM32F091xC) || */
/* defined (STM32F042x6) || defined (STM32F072xB) */
#if defined (STM32F042x6) || defined (STM32F048xx) || \
defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
defined (STM32F091xC) || defined (STM32F098xx)
/**
* @brief Enable VDDIO2 monitor: enable Exti 31 and falling edge detection.
* @note If Exti 31 is enable correlty and VDDIO2 voltage goes below Vrefint,
an interrupt is generated Irq line 1.
NVIS has to be enable by user.
* @retval None
*/
void HAL_PWREx_EnableVddio2Monitor(void)
{
__HAL_PWR_VDDIO2_EXTI_ENABLE_IT();
__HAL_PWR_VDDIO2_EXTI_ENABLE_FALLING_EDGE();
}
/**
* @brief Disable the Vddio2 Monitor.
* @retval None
*/
void HAL_PWREx_DisableVddio2Monitor(void)
{
__HAL_PWR_VDDIO2_EXTI_DISABLE_IT();
__HAL_PWR_VDDIO2_EXTI_DISABLE_FALLING_EDGE();
}
/**
* @brief This function handles the PWR Vddio2 monitor interrupt request.
* @note This API should be called under the VDDIO2_IRQHandler() PVD_VDDIO2_IRQHandler().
* @retval None
*/
void HAL_PWREx_Vddio2Monitor_IRQHandler(void)
{
/* Check PWR exti flag */
if(__HAL_PWR_VDDIO2_EXTI_GET_FLAG() != RESET)
{
/* PWR Vddio2 monitor interrupt user callback */
HAL_PWREx_Vddio2MonitorCallback();
/* Clear PWR Exti pending bit */
__HAL_PWR_VDDIO2_EXTI_CLEAR_FLAG();
}
}
/**
* @brief PWR Vddio2 Monitor interrupt callback
* @retval None
*/
__weak void HAL_PWREx_Vddio2MonitorCallback(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_PWREx_Vddio2MonitorCallback could be implemented in the user file
*/
}
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
defined (STM32F091xC) || defined (STM32F098xx) */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,964 @@
/**
******************************************************************************
* @file stm32f0xx_hal_rcc_ex.c
* @author MCD Application Team
* @brief Extended RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities RCC extension peripheral:
* + Extended Peripheral Control functions
* + Extended Clock Recovery System Control functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/** @defgroup RCCEx RCCEx
* @brief RCC Extension HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#if defined(CRS)
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
* @{
*/
/* Bit position in register */
#define CRS_CFGR_FELIM_BITNUMBER 16
#define CRS_CR_TRIM_BITNUMBER 8
#define CRS_ISR_FECAP_BITNUMBER 16
/**
* @}
*/
#endif /* CRS */
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
* @{
*/
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
[..]
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
select the RTC clock source; in this case the Backup domain will be reset in
order to modify the RTC Clock source, as consequence RTC registers (including
the backup registers) are set to their reset values.
@endverbatim
* @{
*/
/**
* @brief Initializes the RCC extended peripherals clocks according to the specified
* parameters in the RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains the configuration information for the Extended Peripherals clocks
* (USART, RTC, I2C, CEC and USB).
*
* @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source; in this case the Backup domain will be reset in
* order to modify the RTC Clock source, as consequence RTC registers (including
* the backup registers) and RCC_BDCR register are set to their reset values.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tickstart = 0U;
uint32_t temp_reg = 0U;
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
/*---------------------------- RTC configuration -------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
{
/* check for RTC Parameters used to output RTCCLK */
assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
FlagStatus pwrclkchanged = RESET;
/* As soon as function is called to change RTC clock source, activation of the
power domain is done. */
/* Requires to enable write access to Backup Domain of necessary */
if(__HAL_RCC_PWR_IS_CLK_DISABLED())
{
__HAL_RCC_PWR_CLK_ENABLE();
pwrclkchanged = SET;
}
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
{
/* Enable write access to Backup domain */
SET_BIT(PWR->CR, PWR_CR_DBP);
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
{
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)))
{
/* Store the content of BDCR register before the reset of Backup Domain */
temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = temp_reg;
/* Wait for LSERDY if LSE was enabled */
if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON))
{
/* Get Start Tick */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
/* Require to disable power clock if necessary */
if(pwrclkchanged == SET)
{
__HAL_RCC_PWR_CLK_DISABLE();
}
}
/*------------------------------- USART1 Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
{
/* Check the parameters */
assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
/* Configure the USART1 clock source */
__HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
}
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|| defined(STM32F091xC) || defined(STM32F098xx)
/*----------------------------- USART2 Configuration --------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
{
/* Check the parameters */
assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
/* Configure the USART2 clock source */
__HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
}
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
#if defined(STM32F091xC) || defined(STM32F098xx)
/*----------------------------- USART3 Configuration --------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
{
/* Check the parameters */
assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
/* Configure the USART3 clock source */
__HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
}
#endif /* STM32F091xC || STM32F098xx */
/*------------------------------ I2C1 Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
{
/* Check the parameters */
assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
/* Configure the I2C1 clock source */
__HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
/*------------------------------ USB Configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
{
/* Check the parameters */
assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
/* Configure the USB clock source */
__HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
}
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
#if defined(STM32F042x6) || defined(STM32F048xx)\
|| defined(STM32F051x8) || defined(STM32F058xx)\
|| defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|| defined(STM32F091xC) || defined(STM32F098xx)
/*------------------------------ CEC clock Configuration -------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
{
/* Check the parameters */
assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
/* Configure the CEC clock source */
__HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
}
#endif /* STM32F042x6 || STM32F048xx || */
/* STM32F051x8 || STM32F058xx || */
/* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
return HAL_OK;
}
/**
* @brief Get the RCC_ClkInitStruct according to the internal
* RCC configuration registers.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* returns the configuration information for the Extended Peripherals clocks
* (USART, RTC, I2C, CEC and USB).
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
/* Set all possible values for the extended clock type parameter------------*/
/* Common part first */
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_RTC;
/* Get the RTC configuration --------------------------------------------*/
PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
/* Get the USART1 clock configuration --------------------------------------------*/
PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
/* Get the I2C1 clock source -----------------------------------------------*/
PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|| defined(STM32F091xC) || defined(STM32F098xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2;
/* Get the USART2 clock source ---------------------------------------------*/
PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
#if defined(STM32F091xC) || defined(STM32F098xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3;
/* Get the USART3 clock source ---------------------------------------------*/
PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
#endif /* STM32F091xC || STM32F098xx */
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
/* Get the USB clock source ---------------------------------------------*/
PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
#if defined(STM32F042x6) || defined(STM32F048xx)\
|| defined(STM32F051x8) || defined(STM32F058xx)\
|| defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|| defined(STM32F091xC) || defined(STM32F098xx)
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC;
/* Get the CEC clock source ------------------------------------------------*/
PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
#endif /* STM32F042x6 || STM32F048xx || */
/* STM32F051x8 || STM32F058xx || */
/* STM32F071xB || STM32F072xB || STM32F078xx || */
/* STM32F091xC || STM32F098xx */
}
/**
* @brief Returns the peripheral clock frequency
* @note Returns 0 if peripheral clock is unknown
* @param PeriphClk Peripheral clock identifier
* This parameter can be one of the following values:
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
@if STM32F042x6
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F048xx
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F051x8
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F058xx
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F070x6
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
@endif
@if STM32F070xB
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
@endif
@if STM32F071xB
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F072xB
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F078xx
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F091xC
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
@if STM32F098xx
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
@endif
* @retval Frequency in Hz (0: means that no available frequency for the peripheral)
*/
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
/* frequency == 0 : means that no available frequency for the peripheral */
uint32_t frequency = 0U;
uint32_t srcclk = 0U;
#if defined(USB)
uint32_t pllmull = 0U, pllsource = 0U, predivfactor = 0U;
#endif /* USB */
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
switch (PeriphClk)
{
case RCC_PERIPHCLK_RTC:
{
/* Get the current RTC source */
srcclk = __HAL_RCC_GET_RTC_SOURCE();
/* Check if LSE is ready and if RTC clock selection is LSE */
if ((srcclk == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
{
frequency = LSE_VALUE;
}
/* Check if LSI is ready and if RTC clock selection is LSI */
else if ((srcclk == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
{
frequency = LSI_VALUE;
}
/* Check if HSE is ready and if RTC clock selection is HSI_DIV32*/
else if ((srcclk == RCC_RTCCLKSOURCE_HSE_DIV32) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
{
frequency = HSE_VALUE / 32U;
}
break;
}
case RCC_PERIPHCLK_USART1:
{
/* Get the current USART1 source */
srcclk = __HAL_RCC_GET_USART1_SOURCE();
/* Check if USART1 clock selection is PCLK1 */
if (srcclk == RCC_USART1CLKSOURCE_PCLK1)
{
frequency = HAL_RCC_GetPCLK1Freq();
}
/* Check if HSI is ready and if USART1 clock selection is HSI */
else if ((srcclk == RCC_USART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
{
frequency = HSI_VALUE;
}
/* Check if USART1 clock selection is SYSCLK */
else if (srcclk == RCC_USART1CLKSOURCE_SYSCLK)
{
frequency = HAL_RCC_GetSysClockFreq();
}
/* Check if LSE is ready and if USART1 clock selection is LSE */
else if ((srcclk == RCC_USART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
{
frequency = LSE_VALUE;
}
break;
}
#if defined(RCC_CFGR3_USART2SW)
case RCC_PERIPHCLK_USART2:
{
/* Get the current USART2 source */
srcclk = __HAL_RCC_GET_USART2_SOURCE();
/* Check if USART2 clock selection is PCLK1 */
if (srcclk == RCC_USART2CLKSOURCE_PCLK1)
{
frequency = HAL_RCC_GetPCLK1Freq();
}
/* Check if HSI is ready and if USART2 clock selection is HSI */
else if ((srcclk == RCC_USART2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
{
frequency = HSI_VALUE;
}
/* Check if USART2 clock selection is SYSCLK */
else if (srcclk == RCC_USART2CLKSOURCE_SYSCLK)
{
frequency = HAL_RCC_GetSysClockFreq();
}
/* Check if LSE is ready and if USART2 clock selection is LSE */
else if ((srcclk == RCC_USART2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
{
frequency = LSE_VALUE;
}
break;
}
#endif /* RCC_CFGR3_USART2SW */
#if defined(RCC_CFGR3_USART3SW)
case RCC_PERIPHCLK_USART3:
{
/* Get the current USART3 source */
srcclk = __HAL_RCC_GET_USART3_SOURCE();
/* Check if USART3 clock selection is PCLK1 */
if (srcclk == RCC_USART3CLKSOURCE_PCLK1)
{
frequency = HAL_RCC_GetPCLK1Freq();
}
/* Check if HSI is ready and if USART3 clock selection is HSI */
else if ((srcclk == RCC_USART3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
{
frequency = HSI_VALUE;
}
/* Check if USART3 clock selection is SYSCLK */
else if (srcclk == RCC_USART3CLKSOURCE_SYSCLK)
{
frequency = HAL_RCC_GetSysClockFreq();
}
/* Check if LSE is ready and if USART3 clock selection is LSE */
else if ((srcclk == RCC_USART3CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
{
frequency = LSE_VALUE;
}
break;
}
#endif /* RCC_CFGR3_USART3SW */
case RCC_PERIPHCLK_I2C1:
{
/* Get the current I2C1 source */
srcclk = __HAL_RCC_GET_I2C1_SOURCE();
/* Check if HSI is ready and if I2C1 clock selection is HSI */
if ((srcclk == RCC_I2C1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
{
frequency = HSI_VALUE;
}
/* Check if I2C1 clock selection is SYSCLK */
else if (srcclk == RCC_I2C1CLKSOURCE_SYSCLK)
{
frequency = HAL_RCC_GetSysClockFreq();
}
break;
}
#if defined(USB)
case RCC_PERIPHCLK_USB:
{
/* Get the current USB source */
srcclk = __HAL_RCC_GET_USB_SOURCE();
/* Check if PLL is ready and if USB clock selection is PLL */
if ((srcclk == RCC_USBCLKSOURCE_PLL) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY)))
{
/* Get PLL clock source and multiplication factor ----------------------*/
pllmull = RCC->CFGR & RCC_CFGR_PLLMUL;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
pllmull = (pllmull >> RCC_CFGR_PLLMUL_BITNUMBER) + 2U;
predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1U;
if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
{
/* HSE used as PLL clock source : frequency = HSE/PREDIV * PLLMUL */
frequency = (HSE_VALUE/predivfactor) * pllmull;
}
#if defined(RCC_CR2_HSI48ON)
else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
{
/* HSI48 used as PLL clock source : frequency = HSI48/PREDIV * PLLMUL */
frequency = (HSI48_VALUE / predivfactor) * pllmull;
}
#endif /* RCC_CR2_HSI48ON */
else
{
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F078xx) || defined(STM32F072xB) || defined(STM32F070xB)
/* HSI used as PLL clock source : frequency = HSI/PREDIV * PLLMUL */
frequency = (HSI_VALUE / predivfactor) * pllmull;
#else
/* HSI used as PLL clock source : frequency = HSI/2U * PLLMUL */
frequency = (HSI_VALUE >> 1U) * pllmull;
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB */
}
}
#if defined(RCC_CR2_HSI48ON)
/* Check if HSI48 is ready and if USB clock selection is HSI48 */
else if ((srcclk == RCC_USBCLKSOURCE_HSI48) && (HAL_IS_BIT_SET(RCC->CR2, RCC_CR2_HSI48RDY)))
{
frequency = HSI48_VALUE;
}
#endif /* RCC_CR2_HSI48ON */
break;
}
#endif /* USB */
#if defined(CEC)
case RCC_PERIPHCLK_CEC:
{
/* Get the current CEC source */
srcclk = __HAL_RCC_GET_CEC_SOURCE();
/* Check if HSI is ready and if CEC clock selection is HSI */
if ((srcclk == RCC_CECCLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
{
frequency = HSI_VALUE;
}
/* Check if LSE is ready and if CEC clock selection is LSE */
else if ((srcclk == RCC_CECCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
{
frequency = LSE_VALUE;
}
break;
}
#endif /* CEC */
default:
{
break;
}
}
return(frequency);
}
/**
* @}
*/
#if defined(CRS)
/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions
* @brief Extended Clock Recovery System Control functions
*
@verbatim
===============================================================================
##### Extended Clock Recovery System Control functions #####
===============================================================================
[..]
For devices with Clock Recovery System feature (CRS), RCC Extension HAL driver can be used as follows:
(#) In System clock config, HSI48 needs to be enabled
(#) Enable CRS clock in IP MSP init which will use CRS functions
(#) Call CRS functions as follows:
(##) Prepare synchronization configuration necessary for HSI48 calibration
(+++) Default values can be set for frequency Error Measurement (reload and error limit)
and also HSI48 oscillator smooth trimming.
(+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate
directly reload value with target and synchronization frequencies values
(##) Call function HAL_RCCEx_CRSConfig which
(+++) Reset CRS registers to their default values.
(+++) Configure CRS registers with synchronization configuration
(+++) Enable automatic calibration and frequency error counter feature
Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
should be used as SYNC signal.
(##) A polling function is provided to wait for complete synchronization
(+++) Call function HAL_RCCEx_CRSWaitSynchronization()
(+++) According to CRS status, user can decide to adjust again the calibration or continue
application if synchronization is OK
(#) User can retrieve information related to synchronization in calling function
HAL_RCCEx_CRSGetSynchronizationInfo()
(#) Regarding synchronization status and synchronization information, user can try a new calibration
in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
it means that the actual frequency is lower than the target (and so, that the TRIM value should be
incremented), while when it is detected during the upcounting phase it means that the actual frequency
is higher (and that the TRIM value should be decremented).
(#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go
through CRS Handler (RCC_IRQn/RCC_IRQHandler)
(++) Call function HAL_RCCEx_CRSConfig()
(++) Enable RCC_IRQn (thanks to NVIC functions)
(++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT)
(++) Implement CRS status management in the following user callbacks called from
HAL_RCCEx_CRS_IRQHandler():
(+++) HAL_RCCEx_CRS_SyncOkCallback()
(+++) HAL_RCCEx_CRS_SyncWarnCallback()
(+++) HAL_RCCEx_CRS_ExpectedSyncCallback()
(+++) HAL_RCCEx_CRS_ErrorCallback()
(#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
@endverbatim
* @{
*/
/**
* @brief Start automatic synchronization for polling mode
* @param pInit Pointer on RCC_CRSInitTypeDef structure
* @retval None
*/
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
{
uint32_t value = 0U;
/* Check the parameters */
assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
/* CONFIGURATION */
/* Before configuration, reset CRS registers to their default values*/
__HAL_RCC_CRS_FORCE_RESET();
__HAL_RCC_CRS_RELEASE_RESET();
/* Set the SYNCDIV[2:0] bits according to Prescaler value */
/* Set the SYNCSRC[1:0] bits according to Source value */
/* Set the SYNCSPOL bit according to Polarity value */
value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
/* Set the RELOAD[15:0] bits according to ReloadValue value */
value |= pInit->ReloadValue;
/* Set the FELIM[7:0] bits according to ErrorLimitValue value */
value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER);
WRITE_REG(CRS->CFGR, value);
/* Adjust HSI48 oscillator smooth trimming */
/* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER));
/* START AUTOMATIC SYNCHRONIZATION*/
/* Enable Automatic trimming & Frequency error counter */
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
}
/**
* @brief Generate the software synchronization event
* @retval None
*/
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
{
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}
/**
* @brief Return synchronization info
* @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
* @retval None
*/
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
{
/* Check the parameter */
assert_param(pSynchroInfo != NULL);
/* Get the reload value */
pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
/* Get HSI48 oscillator smooth trimming */
pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER);
/* Get Frequency error capture */
pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER);
/* Get Frequency error direction */
pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}
/**
* @brief Wait for CRS Synchronization status.
* @param Timeout Duration of the timeout
* @note Timeout is based on the maximum time to receive a SYNC event based on synchronization
* frequency.
* @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
* @retval Combination of Synchronization status
* This parameter can be a combination of the following values:
* @arg @ref RCC_CRS_TIMEOUT
* @arg @ref RCC_CRS_SYNCOK
* @arg @ref RCC_CRS_SYNCWARN
* @arg @ref RCC_CRS_SYNCERR
* @arg @ref RCC_CRS_SYNCMISS
* @arg @ref RCC_CRS_TRIMOVF
*/
uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
{
uint32_t crsstatus = RCC_CRS_NONE;
uint32_t tickstart = 0U;
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait for CRS flag or timeout detection */
do
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
crsstatus = RCC_CRS_TIMEOUT;
}
}
/* Check CRS SYNCOK flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
{
/* CRS SYNC event OK */
crsstatus |= RCC_CRS_SYNCOK;
/* Clear CRS SYNC event OK bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
}
/* Check CRS SYNCWARN flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
{
/* CRS SYNC warning */
crsstatus |= RCC_CRS_SYNCWARN;
/* Clear CRS SYNCWARN bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
}
/* Check CRS TRIM overflow flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
{
/* CRS SYNC Error */
crsstatus |= RCC_CRS_TRIMOVF;
/* Clear CRS Error bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
}
/* Check CRS Error flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
{
/* CRS SYNC Error */
crsstatus |= RCC_CRS_SYNCERR;
/* Clear CRS Error bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
}
/* Check CRS SYNC Missed flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
{
/* CRS SYNC Missed */
crsstatus |= RCC_CRS_SYNCMISS;
/* Clear CRS SYNC Missed bit */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
}
/* Check CRS Expected SYNC flag */
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
{
/* frequency error counter reached a zero value */
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
}
} while(RCC_CRS_NONE == crsstatus);
return crsstatus;
}
/**
* @brief Handle the Clock Recovery System interrupt request.
* @retval None
*/
void HAL_RCCEx_CRS_IRQHandler(void)
{
uint32_t crserror = RCC_CRS_NONE;
/* Get current IT flags and IT sources values */
uint32_t itflags = READ_REG(CRS->ISR);
uint32_t itsources = READ_REG(CRS->CR);
/* Check CRS SYNCOK flag */
if(((itflags & RCC_CRS_FLAG_SYNCOK) != RESET) && ((itsources & RCC_CRS_IT_SYNCOK) != RESET))
{
/* Clear CRS SYNC event OK flag */
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
/* user callback */
HAL_RCCEx_CRS_SyncOkCallback();
}
/* Check CRS SYNCWARN flag */
else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != RESET) && ((itsources & RCC_CRS_IT_SYNCWARN) != RESET))
{
/* Clear CRS SYNCWARN flag */
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
/* user callback */
HAL_RCCEx_CRS_SyncWarnCallback();
}
/* Check CRS Expected SYNC flag */
else if(((itflags & RCC_CRS_FLAG_ESYNC) != RESET) && ((itsources & RCC_CRS_IT_ESYNC) != RESET))
{
/* frequency error counter reached a zero value */
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
/* user callback */
HAL_RCCEx_CRS_ExpectedSyncCallback();
}
/* Check CRS Error flags */
else
{
if(((itflags & RCC_CRS_FLAG_ERR) != RESET) && ((itsources & RCC_CRS_IT_ERR) != RESET))
{
if((itflags & RCC_CRS_FLAG_SYNCERR) != RESET)
{
crserror |= RCC_CRS_SYNCERR;
}
if((itflags & RCC_CRS_FLAG_SYNCMISS) != RESET)
{
crserror |= RCC_CRS_SYNCMISS;
}
if((itflags & RCC_CRS_FLAG_TRIMOVF) != RESET)
{
crserror |= RCC_CRS_TRIMOVF;
}
/* Clear CRS Error flags */
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
/* user error callback */
HAL_RCCEx_CRS_ErrorCallback(crserror);
}
}
}
/**
* @brief RCCEx Clock Recovery System SYNCOK interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
*/
}
/**
* @brief RCCEx Clock Recovery System SYNCWARN interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
*/
}
/**
* @brief RCCEx Clock Recovery System Expected SYNC interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
*/
}
/**
* @brief RCCEx Clock Recovery System Error interrupt callback.
* @param Error Combination of Error status.
* This parameter can be a combination of the following values:
* @arg @ref RCC_CRS_SYNCERR
* @arg @ref RCC_CRS_SYNCMISS
* @arg @ref RCC_CRS_TRIMOVF
* @retval none
*/
__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(Error);
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
*/
}
/**
* @}
*/
#endif /* CRS */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,816 @@
/**
******************************************************************************
* @file stm32f0xx_hal_uart_ex.c
* @author MCD Application Team
* @brief Extended UART HAL module driver.
* This file provides firmware functions to manage the following extended
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
* + Initialization and de-initialization functions
* + Peripheral Control functions
*
*
@verbatim
==============================================================================
##### UART peripheral extended features #####
==============================================================================
(#) Declare a UART_HandleTypeDef handle structure.
(#) For the UART RS485 Driver Enable mode, initialize the UART registers
by calling the HAL_RS485Ex_Init() API.
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
/** @addtogroup STM32F0xx_HAL_Driver
* @{
*/
/** @defgroup UARTEx UARTEx
* @brief UART Extended HAL module driver
* @{
*/
#ifdef HAL_UART_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
* @{
*/
#if defined(USART_CR1_UESM)
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
#endif /* USART_CR1_UESM */
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
* @{
*/
/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Extended Initialization and Configuration Functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
in asynchronous mode.
(+) For the asynchronous mode the parameters below can be configured:
(++) Baud Rate
(++) Word Length
(++) Stop Bit
(++) Parity: If the parity is enabled, then the MSB bit of the data written
in the data register is transmitted but is changed by the parity bit.
(++) Hardware flow control
(++) Receiver/transmitter modes
(++) Over Sampling Method
(++) One-Bit Sampling Method
(+) For the asynchronous mode, the following advanced features can be configured as well:
(++) TX and/or RX pin level inversion
(++) data logical level inversion
(++) RX and TX pins swap
(++) RX overrun detection disabling
(++) DMA disabling on RX error
(++) MSB first on communication line
(++) auto Baud rate detection
[..]
The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
procedures (details for the procedures are available in reference manual).
@endverbatim
Depending on the frame length defined by the M1 and M0 bits (7-bit,
8-bit or 9-bit), the possible UART formats are listed in the
following table.
Table 1. UART frame format.
+-----------------------------------------------------------------------+
| M1 bit | M0 bit | PCE bit | UART frame |
|---------|---------|-----------|---------------------------------------|
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|---------|---------|-----------|---------------------------------------|
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|---------|---------|-----------|---------------------------------------|
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|---------|---------|-----------|---------------------------------------|
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|---------|---------|-----------|---------------------------------------|
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|---------|---------|-----------|---------------------------------------|
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
+-----------------------------------------------------------------------+
* @{
*/
/**
* @brief Initialize the RS485 Driver enable feature according to the specified
* parameters in the UART_InitTypeDef and creates the associated handle.
* @param huart UART handle.
* @param Polarity Select the driver enable polarity.
* This parameter can be one of the following values:
* @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
* @arg @ref UART_DE_POLARITY_LOW DE signal is active low
* @param AssertionTime Driver Enable assertion time:
* 5-bit value defining the time between the activation of the DE (Driver Enable)
* signal and the beginning of the start bit. It is expressed in sample time
* units (1/8 or 1/16 bit time, depending on the oversampling rate)
* @param DeassertionTime Driver Enable deassertion time:
* 5-bit value defining the time between the end of the last stop bit, in a
* transmitted message, and the de-activation of the DE (Driver Enable) signal.
* It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
* oversampling rate).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
uint32_t DeassertionTime)
{
uint32_t temp;
/* Check the UART handle allocation */
if (huart == NULL)
{
return HAL_ERROR;
}
/* Check the Driver Enable UART instance */
assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
/* Check the Driver Enable polarity */
assert_param(IS_UART_DE_POLARITY(Polarity));
/* Check the Driver Enable assertion time */
assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
/* Check the Driver Enable deassertion time */
assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
if (huart->gState == HAL_UART_STATE_RESET)
{
/* Allocate lock resource and initialize it */
huart->Lock = HAL_UNLOCKED;
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
UART_InitCallbacksToDefault(huart);
if (huart->MspInitCallback == NULL)
{
huart->MspInitCallback = HAL_UART_MspInit;
}
/* Init the low level hardware */
huart->MspInitCallback(huart);
#else
/* Init the low level hardware : GPIO, CLOCK, CORTEX */
HAL_UART_MspInit(huart);
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
}
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
/* Set the Driver Enable polarity */
MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
/* Set the Driver Enable assertion and deassertion times */
temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
/* Enable the Peripheral */
__HAL_UART_ENABLE(huart);
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
return (UART_CheckIdleState(huart));
}
/**
* @}
*/
/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
* @brief Extended functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
This subsection provides a set of Wakeup and FIFO mode related callback functions.
#if defined(USART_CR1_UESM)
#if defined(USART_CR3_WUFIE)
(#) Wakeup from Stop mode Callback:
(+) HAL_UARTEx_WakeupCallback()
#endif
#endif
@endverbatim
* @{
*/
#if defined(USART_CR1_UESM)
#if defined(USART_CR3_WUFIE)
/**
* @brief UART wakeup from Stop mode callback.
* @param huart UART handle.
* @retval None
*/
__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_UARTEx_WakeupCallback can be implemented in the user file.
*/
}
#endif /* USART_CR3_WUFIE */
#endif /* USART_CR1_UESM */
/**
* @}
*/
/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides the following functions:
(+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
detection length to more than 4 bits for multiprocessor address mark wake up.
#if defined(USART_CR1_UESM)
(+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
trigger: address match, Start Bit detection or RXNE bit status.
(+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
(+) HAL_UARTEx_DisableStopMode() API disables the above functionality
#endif
[..] This subsection also provides a set of additional functions providing enhanced reception
services to user. (For example, these functions allow application to handle use cases
where number of data to be received is unknown).
(#) Compared to standard reception services which only consider number of received
data elements as reception completion criteria, these functions also consider additional events
as triggers for updating reception status to caller :
(+) Detection of inactivity period (RX line has not been active for a given period).
(++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
for 1 frame time, after last received byte.
(++) RX inactivity detected by RTO, i.e. line has been in idle state
for a programmable time, after last received byte.
(+) Detection that a specific character has been received.
(#) There are two mode of transfer:
(+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
or till IDLE event occurs. Reception is handled only during function execution.
When function exits, no data reception could occur. HAL status and number of actually received data elements,
are returned by function after finishing transfer.
(+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
These API's return the HAL status.
The end of the data processing will be indicated through the
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
(#) Blocking mode API:
(+) HAL_UARTEx_ReceiveToIdle()
(#) Non-Blocking mode API with Interrupt:
(+) HAL_UARTEx_ReceiveToIdle_IT()
(#) Non-Blocking mode API with DMA:
(+) HAL_UARTEx_ReceiveToIdle_DMA()
@endverbatim
* @{
*/
/**
* @brief By default in multiprocessor mode, when the wake up method is set
* to address mark, the UART handles only 4-bit long addresses detection;
* this API allows to enable longer addresses detection (6-, 7- or 8-bit
* long).
* @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
* 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
* @param huart UART handle.
* @param AddressLength This parameter can be one of the following values:
* @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
* @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
* @retval HAL status
*/
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
{
/* Check the UART handle allocation */
if (huart == NULL)
{
return HAL_ERROR;
}
/* Check the address length parameter */
assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
/* Set the address length */
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
/* Enable the Peripheral */
__HAL_UART_ENABLE(huart);
/* TEACK and/or REACK to check before moving huart->gState to Ready */
return (UART_CheckIdleState(huart));
}
#if defined(USART_CR1_UESM)
/**
* @brief Set Wakeup from Stop mode interrupt flag selection.
* @note It is the application responsibility to enable the interrupt used as
* usart_wkup interrupt source before entering low-power mode.
* @param huart UART handle.
* @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
* This parameter can be one of the following values:
* @arg @ref UART_WAKEUP_ON_ADDRESS
* @arg @ref UART_WAKEUP_ON_STARTBIT
* @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart;
/* check the wake-up from stop mode UART instance */
assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
/* check the wake-up selection parameter */
assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
/* Process Locked */
__HAL_LOCK(huart);
huart->gState = HAL_UART_STATE_BUSY;
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
#if defined(USART_CR3_WUS)
/* Set the wake-up selection scheme */
MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
#endif /* USART_CR3_WUS */
if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
{
UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
}
/* Enable the Peripheral */
__HAL_UART_ENABLE(huart);
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
/* Wait until REACK flag is set */
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
{
status = HAL_TIMEOUT;
}
else
{
/* Initialize the UART State */
huart->gState = HAL_UART_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(huart);
return status;
}
/**
* @brief Enable UART Stop Mode.
* @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
* @param huart UART handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
{
/* Process Locked */
__HAL_LOCK(huart);
/* Set UESM bit */
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
/**
* @brief Disable UART Stop Mode.
* @param huart UART handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
{
/* Process Locked */
__HAL_LOCK(huart);
/* Clear UESM bit */
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
/* Process Unlocked */
__HAL_UNLOCK(huart);
return HAL_OK;
}
#endif /* USART_CR1_UESM */
/**
* @brief Receive an amount of data in blocking mode till either the expected number of data
* is received or an IDLE event occurs.
* @note HAL_OK is returned if reception is completed (expected number of data has been received)
* or if reception is stopped after IDLE event (less than the expected number of data has been received)
* In this case, RxLen output parameter indicates number of data available in reception buffer.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
* of uint16_t available through pData.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* address of user data buffer for storing data to be received, should be aligned on a half word frontier
* (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
* use of specific alignment compilation directives or pragmas might be required to ensure proper
* alignment for pData.
* @param huart UART handle.
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
* @param RxLen Number of data elements finally received
* (could be lower than Size, in case reception ends on IDLE event)
* @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
uint32_t Timeout)
{
uint8_t *pdata8bits;
uint16_t *pdata16bits;
uint16_t uhMask;
uint32_t tickstart;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
should be aligned on a uint16_t frontier, as data to be received from RDR will be
handled through a uint16_t cast. */
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
{
if ((((uint32_t)pData) & 1U) != 0U)
{
return HAL_ERROR;
}
}
__HAL_LOCK(huart);
huart->ErrorCode = HAL_UART_ERROR_NONE;
huart->RxState = HAL_UART_STATE_BUSY_RX;
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
huart->RxXferSize = Size;
huart->RxXferCount = Size;
/* Computation of UART mask to apply to RDR register */
UART_MASK_COMPUTATION(huart);
uhMask = huart->Mask;
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
{
pdata8bits = NULL;
pdata16bits = (uint16_t *) pData;
}
else
{
pdata8bits = pData;
pdata16bits = NULL;
}
__HAL_UNLOCK(huart);
/* Initialize output number of received elements */
*RxLen = 0U;
/* as long as data have to be received */
while (huart->RxXferCount > 0U)
{
/* Check if IDLE flag is set */
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
{
/* Clear IDLE flag in ISR */
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
/* If Set, but no data ever received, clear flag without exiting loop */
/* If Set, and data has already been received, this means Idle Event is valid : End reception */
if (*RxLen > 0U)
{
huart->RxState = HAL_UART_STATE_READY;
return HAL_OK;
}
}
/* Check if RXNE flag is set */
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
{
if (pdata8bits == NULL)
{
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
pdata16bits++;
}
else
{
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
pdata8bits++;
}
/* Increment number of received elements */
*RxLen += 1U;
huart->RxXferCount--;
}
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
huart->RxState = HAL_UART_STATE_READY;
return HAL_TIMEOUT;
}
}
}
/* Set number of received elements in output parameter : RxLen */
*RxLen = huart->RxXferSize - huart->RxXferCount;
/* At end of Rx process, restore huart->RxState to Ready */
huart->RxState = HAL_UART_STATE_READY;
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data in interrupt mode till either the expected number of data
* is received or an IDLE event occurs.
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
* to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
* number of received data elements.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
* of uint16_t available through pData.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* address of user data buffer for storing data to be received, should be aligned on a half word frontier
* (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
* use of specific alignment compilation directives or pragmas might be required
* to ensure proper alignment for pData.
* @param huart UART handle.
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
should be aligned on a uint16_t frontier, as data to be received from RDR will be
handled through a uint16_t cast. */
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
{
if ((((uint32_t)pData) & 1U) != 0U)
{
return HAL_ERROR;
}
}
__HAL_LOCK(huart);
/* Set Reception type to reception till IDLE Event*/
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
status = UART_Start_Receive_IT(huart, pData, Size);
/* Check Rx process has been successfully started */
if (status == HAL_OK)
{
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
{
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
}
else
{
/* In case of errors already pending when reception is started,
Interrupts may have already been raised and lead to reception abortion.
(Overrun error for instance).
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
status = HAL_ERROR;
}
}
return status;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Receive an amount of data in DMA mode till either the expected number
* of data is received or an IDLE event occurs.
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
* to DMA services, transferring automatically received data elements in user reception buffer and
* calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
* reception phase as ended. In all cases, callback execution will indicate number of received data elements.
* @note When the UART parity is enabled (PCE = 1), the received data contain
* the parity bit (MSB position).
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
* of uint16_t available through pData.
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
* address of user data buffer for storing data to be received, should be aligned on a half word frontier
* (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
* use of specific alignment compilation directives or pragmas might be required
* to ensure proper alignment for pData.
* @param huart UART handle.
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
{
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
should be aligned on a uint16_t frontier, as data copy from RDR will be
handled by DMA from a uint16_t frontier. */
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
{
if ((((uint32_t)pData) & 1U) != 0U)
{
return HAL_ERROR;
}
}
__HAL_LOCK(huart);
/* Set Reception type to reception till IDLE Event*/
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
status = UART_Start_Receive_DMA(huart, pData, Size);
/* Check Rx process has been successfully started */
if (status == HAL_OK)
{
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
{
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
}
else
{
/* In case of errors already pending when reception is started,
Interrupts may have already been raised and lead to reception abortion.
(Overrun error for instance).
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
status = HAL_ERROR;
}
}
return status;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup UARTEx_Private_Functions
* @{
*/
#if defined(USART_CR1_UESM)
/**
* @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
* @param huart UART handle.
* @param WakeUpSelection UART wake up from stop mode parameters.
* @retval None
*/
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
{
assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
/* Set the USART address length */
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
/* Set the USART address node */
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
}
#endif /* USART_CR1_UESM */
/**
* @}
*/
#endif /* HAL_UART_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/