first commit
This commit is contained in:
514
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c
Normal file
514
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal.c
Normal file
@@ -0,0 +1,514 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal.c
|
||||
* @author MCD Application Team
|
||||
* @brief HAL module driver.
|
||||
* This is the common part of the HAL initialization
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..]
|
||||
The common HAL driver contains a set of generic and common APIs that can be
|
||||
used by the PPP peripheral drivers and the user to start using the HAL.
|
||||
[..]
|
||||
The HAL contains two APIs categories:
|
||||
(+) HAL Initialization and de-initialization functions
|
||||
(+) HAL Control functions
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HAL HAL
|
||||
* @brief HAL module driver.
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/** @defgroup HAL_Private_Constants HAL Private Constants
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @brief STM32F0xx HAL Driver version number V1.7.6
|
||||
*/
|
||||
#define __STM32F0xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
|
||||
#define __STM32F0xx_HAL_VERSION_SUB1 (0x07U) /*!< [23:16] sub1 version */
|
||||
#define __STM32F0xx_HAL_VERSION_SUB2 (0x06U) /*!< [15:8] sub2 version */
|
||||
#define __STM32F0xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
|
||||
#define __STM32F0xx_HAL_VERSION ((__STM32F0xx_HAL_VERSION_MAIN << 24U)\
|
||||
|(__STM32F0xx_HAL_VERSION_SUB1 << 16U)\
|
||||
|(__STM32F0xx_HAL_VERSION_SUB2 << 8U )\
|
||||
|(__STM32F0xx_HAL_VERSION_RC))
|
||||
|
||||
#define IDCODE_DEVID_MASK (0x00000FFFU)
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/** @defgroup HAL_Private_Macros HAL Private Macros
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported variables ---------------------------------------------------------*/
|
||||
/** @defgroup HAL_Private_Variables HAL Exported Variables
|
||||
* @{
|
||||
*/
|
||||
__IO uint32_t uwTick;
|
||||
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
|
||||
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Exported functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup HAL_Exported_Functions HAL Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions
|
||||
* @brief Initialization and de-initialization functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and de-initialization functions #####
|
||||
===============================================================================
|
||||
[..] This section provides functions allowing to:
|
||||
(+) Initializes the Flash interface, the NVIC allocation and initial clock
|
||||
configuration. It initializes the systick also when timeout is needed
|
||||
and the backup domain when enabled.
|
||||
(+) de-Initializes common part of the HAL.
|
||||
(+) Configure The time base source to have 1ms time base with a dedicated
|
||||
Tick interrupt priority.
|
||||
(++) SysTick timer is used by default as source of time base, but user
|
||||
can eventually implement his proper time base source (a general purpose
|
||||
timer for example or other time source), keeping in mind that Time base
|
||||
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
|
||||
handled in milliseconds basis.
|
||||
(++) Time base configuration function (HAL_InitTick ()) is called automatically
|
||||
at the beginning of the program after reset by HAL_Init() or at any time
|
||||
when clock is configured, by HAL_RCC_ClockConfig().
|
||||
(++) Source of time base is configured to generate interrupts at regular
|
||||
time intervals. Care must be taken if HAL_Delay() is called from a
|
||||
peripheral ISR process, the Tick interrupt line must have higher priority
|
||||
(numerically lower) than the peripheral interrupt. Otherwise the caller
|
||||
ISR process will be blocked.
|
||||
(++) functions affecting time base configurations are declared as __Weak
|
||||
to make override possible in case of other implementations in user file.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief This function configures the Flash prefetch,
|
||||
* Configures time base source, NVIC and Low level hardware
|
||||
* @note This function is called at the beginning of program after reset and before
|
||||
* the clock configuration
|
||||
* @note The time base configuration is based on HSI clock when exiting from Reset.
|
||||
* Once done, time base tick start incrementing.
|
||||
* In the default implementation,Systick is used as source of time base.
|
||||
* The tick variable is incremented each 1ms in its ISR.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_Init(void)
|
||||
{
|
||||
/* Configure Flash prefetch */
|
||||
#if (PREFETCH_ENABLE != 0)
|
||||
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
|
||||
#endif /* PREFETCH_ENABLE */
|
||||
|
||||
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
|
||||
|
||||
HAL_InitTick(TICK_INT_PRIORITY);
|
||||
|
||||
/* Init the low level hardware */
|
||||
HAL_MspInit();
|
||||
|
||||
/* Return function status */
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function de-Initialize common part of the HAL and stops the SysTick
|
||||
* of time base.
|
||||
* @note This function is optional.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DeInit(void)
|
||||
{
|
||||
/* Reset of all peripherals */
|
||||
__HAL_RCC_APB1_FORCE_RESET();
|
||||
__HAL_RCC_APB1_RELEASE_RESET();
|
||||
|
||||
__HAL_RCC_APB2_FORCE_RESET();
|
||||
__HAL_RCC_APB2_RELEASE_RESET();
|
||||
|
||||
__HAL_RCC_AHB_FORCE_RESET();
|
||||
__HAL_RCC_AHB_RELEASE_RESET();
|
||||
|
||||
/* De-Init the low level hardware */
|
||||
HAL_MspDeInit();
|
||||
|
||||
/* Return function status */
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the MSP.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_MspInit(void)
|
||||
{
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_MspInit could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DeInitializes the MSP.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_MspDeInit(void)
|
||||
{
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_MspDeInit could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function configures the source of the time base.
|
||||
* The time source is configured to have 1ms time base with a dedicated
|
||||
* Tick interrupt priority.
|
||||
* @note This function is called automatically at the beginning of program after
|
||||
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
|
||||
* @note In the default implementation, SysTick timer is the source of time base.
|
||||
* It is used to generate interrupts at regular time intervals.
|
||||
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
|
||||
* The SysTick interrupt must have higher priority (numerically lower)
|
||||
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
|
||||
* The function is declared as __Weak to be overwritten in case of other
|
||||
* implementation in user file.
|
||||
* @param TickPriority Tick interrupt priority.
|
||||
* @retval HAL status
|
||||
*/
|
||||
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
|
||||
{
|
||||
/*Configure the SysTick to have interrupt in 1ms time basis*/
|
||||
if (HAL_SYSTICK_Config(SystemCoreClock / (1000U / uwTickFreq)) > 0U)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Configure the SysTick IRQ priority */
|
||||
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
|
||||
{
|
||||
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
|
||||
uwTickPrio = TickPriority;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Return function status */
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions
|
||||
* @brief HAL Control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### HAL Control functions #####
|
||||
===============================================================================
|
||||
[..] This section provides functions allowing to:
|
||||
(+) Provide a tick value in millisecond
|
||||
(+) Provide a blocking delay in millisecond
|
||||
(+) Suspend the time base source interrupt
|
||||
(+) Resume the time base source interrupt
|
||||
(+) Get the HAL API driver version
|
||||
(+) Get the device identifier
|
||||
(+) Get the device revision identifier
|
||||
(+) Enable/Disable Debug module during Sleep mode
|
||||
(+) Enable/Disable Debug module during STOP mode
|
||||
(+) Enable/Disable Debug module during STANDBY mode
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief This function is called to increment a global variable "uwTick"
|
||||
* used as application time base.
|
||||
* @note In the default implementation, this variable is incremented each 1ms
|
||||
* in SysTick ISR.
|
||||
* @note This function is declared as __weak to be overwritten in case of other
|
||||
* implementations in user file.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_IncTick(void)
|
||||
{
|
||||
uwTick += uwTickFreq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Provides a tick value in millisecond.
|
||||
* @note This function is declared as __weak to be overwritten in case of other
|
||||
* implementations in user file.
|
||||
* @retval tick value
|
||||
*/
|
||||
__weak uint32_t HAL_GetTick(void)
|
||||
{
|
||||
return uwTick;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function returns a tick priority.
|
||||
* @retval tick priority
|
||||
*/
|
||||
uint32_t HAL_GetTickPrio(void)
|
||||
{
|
||||
return uwTickPrio;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set new tick Freq.
|
||||
* @retval status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
HAL_TickFreqTypeDef prevTickFreq;
|
||||
|
||||
assert_param(IS_TICKFREQ(Freq));
|
||||
|
||||
if (uwTickFreq != Freq)
|
||||
{
|
||||
/* Back up uwTickFreq frequency */
|
||||
prevTickFreq = uwTickFreq;
|
||||
|
||||
/* Update uwTickFreq global variable used by HAL_InitTick() */
|
||||
uwTickFreq = Freq;
|
||||
|
||||
/* Apply the new tick Freq */
|
||||
status = HAL_InitTick(uwTickPrio);
|
||||
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
/* Restore previous tick frequency */
|
||||
uwTickFreq = prevTickFreq;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief return tick frequency.
|
||||
* @retval tick period in Hz
|
||||
*/
|
||||
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
|
||||
{
|
||||
return uwTickFreq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function provides accurate delay (in milliseconds) based
|
||||
* on variable incremented.
|
||||
* @note In the default implementation , SysTick timer is the source of time base.
|
||||
* It is used to generate interrupts at regular time intervals where uwTick
|
||||
* is incremented.
|
||||
* @note ThiS function is declared as __weak to be overwritten in case of other
|
||||
* implementations in user file.
|
||||
* @param Delay specifies the delay time length, in milliseconds.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_Delay(uint32_t Delay)
|
||||
{
|
||||
uint32_t tickstart = HAL_GetTick();
|
||||
uint32_t wait = Delay;
|
||||
|
||||
/* Add a freq to guarantee minimum wait */
|
||||
if (wait < HAL_MAX_DELAY)
|
||||
{
|
||||
wait += (uint32_t)(uwTickFreq);
|
||||
}
|
||||
|
||||
while((HAL_GetTick() - tickstart) < wait)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Suspend Tick increment.
|
||||
* @note In the default implementation , SysTick timer is the source of time base. It is
|
||||
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
|
||||
* is called, the the SysTick interrupt will be disabled and so Tick increment
|
||||
* is suspended.
|
||||
* @note This function is declared as __weak to be overwritten in case of other
|
||||
* implementations in user file.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SuspendTick(void)
|
||||
|
||||
{
|
||||
/* Disable SysTick Interrupt */
|
||||
CLEAR_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resume Tick increment.
|
||||
* @note In the default implementation , SysTick timer is the source of time base. It is
|
||||
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
|
||||
* is called, the the SysTick interrupt will be enabled and so Tick increment
|
||||
* is resumed.
|
||||
* @note This function is declared as __weak to be overwritten in case of other
|
||||
* implementations in user file.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_ResumeTick(void)
|
||||
{
|
||||
/* Enable SysTick Interrupt */
|
||||
SET_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This method returns the HAL revision
|
||||
* @retval version 0xXYZR (8bits for each decimal, R for RC)
|
||||
*/
|
||||
uint32_t HAL_GetHalVersion(void)
|
||||
{
|
||||
return __STM32F0xx_HAL_VERSION;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the device revision identifier.
|
||||
* @retval Device revision identifier
|
||||
*/
|
||||
uint32_t HAL_GetREVID(void)
|
||||
{
|
||||
return((DBGMCU->IDCODE) >> 16U);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the device identifier.
|
||||
* @retval Device identifier
|
||||
*/
|
||||
uint32_t HAL_GetDEVID(void)
|
||||
{
|
||||
return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns first word of the unique device identifier (UID based on 96 bits)
|
||||
* @retval Device identifier
|
||||
*/
|
||||
uint32_t HAL_GetUIDw0(void)
|
||||
{
|
||||
return(READ_REG(*((uint32_t *)UID_BASE)));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns second word of the unique device identifier (UID based on 96 bits)
|
||||
* @retval Device identifier
|
||||
*/
|
||||
uint32_t HAL_GetUIDw1(void)
|
||||
{
|
||||
return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns third word of the unique device identifier (UID based on 96 bits)
|
||||
* @retval Device identifier
|
||||
*/
|
||||
uint32_t HAL_GetUIDw2(void)
|
||||
{
|
||||
return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the Debug Module during STOP mode
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_DBGMCU_EnableDBGStopMode(void)
|
||||
{
|
||||
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the Debug Module during STOP mode
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_DBGMCU_DisableDBGStopMode(void)
|
||||
{
|
||||
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the Debug Module during STANDBY mode
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_DBGMCU_EnableDBGStandbyMode(void)
|
||||
{
|
||||
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the Debug Module during STANDBY mode
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_DBGMCU_DisableDBGStandbyMode(void)
|
||||
{
|
||||
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
341
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c
Normal file
341
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_cortex.c
Normal file
@@ -0,0 +1,341 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_cortex.c
|
||||
* @author MCD Application Team
|
||||
* @brief CORTEX HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the CORTEX:
|
||||
* + Initialization and de-initialization functions
|
||||
* + Peripheral Control functions
|
||||
*
|
||||
* @verbatim
|
||||
==============================================================================
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
|
||||
[..]
|
||||
*** How to configure Interrupts using CORTEX HAL driver ***
|
||||
===========================================================
|
||||
[..]
|
||||
This section provides functions allowing to configure the NVIC interrupts (IRQ).
|
||||
The Cortex-M0 exceptions are managed by CMSIS functions.
|
||||
(#) Enable and Configure the priority of the selected IRQ Channels.
|
||||
The priority can be 0..3.
|
||||
|
||||
-@- Lower priority values gives higher priority.
|
||||
-@- Priority Order:
|
||||
(#@) Lowest priority.
|
||||
(#@) Lowest hardware priority (IRQn position).
|
||||
|
||||
(#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority()
|
||||
|
||||
(#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ()
|
||||
|
||||
-@- Negative value of IRQn_Type are not allowed.
|
||||
|
||||
|
||||
[..]
|
||||
*** How to configure Systick using CORTEX HAL driver ***
|
||||
========================================================
|
||||
[..]
|
||||
Setup SysTick Timer for time base.
|
||||
|
||||
(+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
|
||||
is a CMSIS function that:
|
||||
(++) Configures the SysTick Reload register with value passed as function parameter.
|
||||
(++) Configures the SysTick IRQ priority to the lowest value (0x03).
|
||||
(++) Resets the SysTick Counter register.
|
||||
(++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
|
||||
(++) Enables the SysTick Interrupt.
|
||||
(++) Starts the SysTick Counter.
|
||||
|
||||
(+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
|
||||
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
|
||||
HAL_SYSTICK_Config() function call. The HAL_SYSTICK_CLKSourceConfig() macro is defined
|
||||
inside the stm32f0xx_hal_cortex.h file.
|
||||
|
||||
(+) You can change the SysTick IRQ priority by calling the
|
||||
HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
|
||||
call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
|
||||
|
||||
(+) To adjust the SysTick time base, use the following formula:
|
||||
|
||||
Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
|
||||
(++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
|
||||
(++) Reload Value should not exceed 0xFFFFFF
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup CORTEX CORTEX
|
||||
* @brief CORTEX CORTEX HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_CORTEX_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Exported functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### Initialization and de-initialization functions #####
|
||||
==============================================================================
|
||||
[..]
|
||||
This section provides the CORTEX HAL driver functions allowing to configure Interrupts
|
||||
Systick functionalities
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Sets the priority of an interrupt.
|
||||
* @param IRQn External interrupt number .
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to stm32f0xx.h file)
|
||||
* @param PreemptPriority The preemption priority for the IRQn channel.
|
||||
* This parameter can be a value between 0 and 3.
|
||||
* A lower priority value indicates a higher priority
|
||||
* @param SubPriority the subpriority level for the IRQ channel.
|
||||
* with stm32f0xx devices, this parameter is a dummy value and it is ignored, because
|
||||
* no subpriority supported in Cortex M0 based products.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
|
||||
NVIC_SetPriority(IRQn,PreemptPriority);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables a device specific interrupt in the NVIC interrupt controller.
|
||||
* @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
|
||||
* function should be called before.
|
||||
* @param IRQn External interrupt number.
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
|
||||
|
||||
/* Enable interrupt */
|
||||
NVIC_EnableIRQ(IRQn);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disables a device specific interrupt in the NVIC interrupt controller.
|
||||
* @param IRQn External interrupt number.
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
|
||||
|
||||
/* Disable interrupt */
|
||||
NVIC_DisableIRQ(IRQn);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initiates a system reset request to reset the MCU.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_NVIC_SystemReset(void)
|
||||
{
|
||||
/* System Reset */
|
||||
NVIC_SystemReset();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
|
||||
* Counter is in free running mode to generate periodic interrupts.
|
||||
* @param TicksNumb Specifies the ticks Number of ticks between two interrupts.
|
||||
* @retval status: - 0 Function succeeded.
|
||||
* - 1 Function failed.
|
||||
*/
|
||||
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
|
||||
{
|
||||
return SysTick_Config(TicksNumb);
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions
|
||||
* @brief Cortex control functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
==============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to control the CORTEX
|
||||
(NVIC, SYSTICK) functionalities.
|
||||
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Gets the priority of an interrupt.
|
||||
* @param IRQn External interrupt number.
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
|
||||
* @retval None
|
||||
*/
|
||||
uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn)
|
||||
{
|
||||
/* Get priority for Cortex-M system or device specific interrupts */
|
||||
return NVIC_GetPriority(IRQn);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Sets Pending bit of an external interrupt.
|
||||
* @param IRQn External interrupt number
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
|
||||
|
||||
/* Set interrupt pending */
|
||||
NVIC_SetPendingIRQ(IRQn);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Gets Pending Interrupt (reads the pending register in the NVIC
|
||||
* and returns the pending bit for the specified interrupt).
|
||||
* @param IRQn External interrupt number.
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
|
||||
* @retval status: - 0 Interrupt status is not pending.
|
||||
* - 1 Interrupt status is pending.
|
||||
*/
|
||||
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
|
||||
|
||||
/* Return 1 if pending else 0 */
|
||||
return NVIC_GetPendingIRQ(IRQn);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clears the pending bit of an external interrupt.
|
||||
* @param IRQn External interrupt number.
|
||||
* This parameter can be an enumerator of IRQn_Type enumeration
|
||||
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f0xxxx.h))
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
|
||||
|
||||
/* Clear pending interrupt */
|
||||
NVIC_ClearPendingIRQ(IRQn);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configures the SysTick clock source.
|
||||
* @param CLKSource specifies the SysTick clock source.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
|
||||
* @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
|
||||
if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
|
||||
{
|
||||
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
|
||||
}
|
||||
else
|
||||
{
|
||||
SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function handles SYSTICK interrupt request.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_SYSTICK_IRQHandler(void)
|
||||
{
|
||||
HAL_SYSTICK_Callback();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief SYSTICK callback.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SYSTICK_Callback(void)
|
||||
{
|
||||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||||
the HAL_SYSTICK_Callback could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_CORTEX_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
901
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c
Normal file
901
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_dma.c
Normal file
@@ -0,0 +1,901 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_dma.c
|
||||
* @author MCD Application Team
|
||||
* @brief DMA HAL module driver.
|
||||
*
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the Direct Memory Access (DMA) peripheral:
|
||||
* + Initialization and de-initialization functions
|
||||
* + IO operation functions
|
||||
* + Peripheral State and errors functions
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..]
|
||||
(#) Enable and configure the peripheral to be connected to the DMA Channel
|
||||
(except for internal SRAM / FLASH memories: no initialization is
|
||||
necessary). Please refer to Reference manual for connection between peripherals
|
||||
and DMA requests .
|
||||
|
||||
(#) For a given Channel, program the required configuration through the following parameters:
|
||||
Transfer Direction, Source and Destination data formats,
|
||||
Circular or Normal mode, Channel Priority level, Source and Destination Increment mode,
|
||||
using HAL_DMA_Init() function.
|
||||
|
||||
(#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error
|
||||
detection.
|
||||
|
||||
(#) Use HAL_DMA_Abort() function to abort the current transfer
|
||||
|
||||
-@- In Memory-to-Memory transfer mode, Circular mode is not allowed.
|
||||
*** Polling mode IO operation ***
|
||||
=================================
|
||||
[..]
|
||||
(+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source
|
||||
address and destination address and the Length of data to be transferred
|
||||
(+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this
|
||||
case a fixed Timeout can be configured by User depending from his application.
|
||||
|
||||
*** Interrupt mode IO operation ***
|
||||
===================================
|
||||
[..]
|
||||
(+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority()
|
||||
(+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ()
|
||||
(+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of
|
||||
Source address and destination address and the Length of data to be transferred.
|
||||
In this case the DMA interrupt is configured
|
||||
(+) Use HAL_DMA_Channel_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine
|
||||
(+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can
|
||||
add his own function by customization of function pointer XferCpltCallback and
|
||||
XferErrorCallback (i.e a member of DMA handle structure).
|
||||
|
||||
*** DMA HAL driver macros list ***
|
||||
=============================================
|
||||
[..]
|
||||
Below the list of most used macros in DMA HAL driver.
|
||||
|
||||
[..]
|
||||
(@) You can refer to the DMA HAL driver header file for more useful macros
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/** @defgroup DMA DMA
|
||||
* @brief DMA HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_DMA_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup DMA_Private_Functions DMA Private Functions
|
||||
* @{
|
||||
*/
|
||||
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength);
|
||||
static void DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma);
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup DMA_Exported_Functions DMA Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup DMA_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Initialization and de-initialization functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and de-initialization functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This section provides functions allowing to initialize the DMA Channel source
|
||||
and destination addresses, incrementation and data sizes, transfer direction,
|
||||
circular/normal mode selection, memory-to-memory mode selection and Channel priority value.
|
||||
[..]
|
||||
The HAL_DMA_Init() function follows the DMA configuration procedures as described in
|
||||
reference manual.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the DMA according to the specified
|
||||
* parameters in the DMA_InitTypeDef and initialize the associated handle.
|
||||
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
uint32_t tmp = 0U;
|
||||
|
||||
/* Check the DMA handle allocation */
|
||||
if(NULL == hdma)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
|
||||
assert_param(IS_DMA_DIRECTION(hdma->Init.Direction));
|
||||
assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc));
|
||||
assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc));
|
||||
assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment));
|
||||
assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment));
|
||||
assert_param(IS_DMA_MODE(hdma->Init.Mode));
|
||||
assert_param(IS_DMA_PRIORITY(hdma->Init.Priority));
|
||||
|
||||
/* Change DMA peripheral state */
|
||||
hdma->State = HAL_DMA_STATE_BUSY;
|
||||
|
||||
/* Get the CR register value */
|
||||
tmp = hdma->Instance->CCR;
|
||||
|
||||
/* Clear PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR bits */
|
||||
tmp &= ((uint32_t)~(DMA_CCR_PL | DMA_CCR_MSIZE | DMA_CCR_PSIZE | \
|
||||
DMA_CCR_MINC | DMA_CCR_PINC | DMA_CCR_CIRC | \
|
||||
DMA_CCR_DIR));
|
||||
|
||||
/* Prepare the DMA Channel configuration */
|
||||
tmp |= hdma->Init.Direction |
|
||||
hdma->Init.PeriphInc | hdma->Init.MemInc |
|
||||
hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment |
|
||||
hdma->Init.Mode | hdma->Init.Priority;
|
||||
|
||||
/* Write to DMA Channel CR register */
|
||||
hdma->Instance->CCR = tmp;
|
||||
|
||||
/* Initialize DmaBaseAddress and ChannelIndex parameters used
|
||||
by HAL_DMA_IRQHandler() and HAL_DMA_PollForTransfer() */
|
||||
DMA_CalcBaseAndBitshift(hdma);
|
||||
|
||||
/* Initialise the error code */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
|
||||
|
||||
/* Initialize the DMA state*/
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
|
||||
/* Allocate lock resource and initialize it */
|
||||
hdma->Lock = HAL_UNLOCKED;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DeInitialize the DMA peripheral
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
/* Check the DMA handle allocation */
|
||||
if(NULL == hdma)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
|
||||
|
||||
/* Disable the selected DMA Channelx */
|
||||
hdma->Instance->CCR &= ~DMA_CCR_EN;
|
||||
|
||||
/* Reset DMA Channel control register */
|
||||
hdma->Instance->CCR = 0U;
|
||||
|
||||
/* Reset DMA Channel Number of Data to Transfer register */
|
||||
hdma->Instance->CNDTR = 0U;
|
||||
|
||||
/* Reset DMA Channel peripheral address register */
|
||||
hdma->Instance->CPAR = 0U;
|
||||
|
||||
/* Reset DMA Channel memory address register */
|
||||
hdma->Instance->CMAR = 0U;
|
||||
|
||||
/* Get DMA Base Address */
|
||||
DMA_CalcBaseAndBitshift(hdma);
|
||||
|
||||
/* Clear all flags */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
|
||||
|
||||
/* Clean callbacks */
|
||||
hdma->XferCpltCallback = NULL;
|
||||
hdma->XferHalfCpltCallback = NULL;
|
||||
hdma->XferErrorCallback = NULL;
|
||||
hdma->XferAbortCallback = NULL;
|
||||
|
||||
/* Reset the error code */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
|
||||
|
||||
/* Reset the DMA state */
|
||||
hdma->State = HAL_DMA_STATE_RESET;
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup DMA_Exported_Functions_Group2 Input and Output operation functions
|
||||
* @brief I/O operation functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
[..] This section provides functions allowing to:
|
||||
(+) Configure the source, destination address and data length and Start DMA transfer
|
||||
(+) Configure the source, destination address and data length and
|
||||
Start DMA transfer with interrupt
|
||||
(+) Abort DMA transfer
|
||||
(+) Poll for transfer complete
|
||||
(+) Handle DMA interrupt request
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Start the DMA Transfer.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @param SrcAddress The source memory Buffer address
|
||||
* @param DstAddress The destination memory Buffer address
|
||||
* @param DataLength The length of data to be transferred from source to destination
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hdma);
|
||||
|
||||
if(HAL_DMA_STATE_READY == hdma->State)
|
||||
{
|
||||
/* Change DMA peripheral state */
|
||||
hdma->State = HAL_DMA_STATE_BUSY;
|
||||
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
|
||||
|
||||
/* Disable the peripheral */
|
||||
hdma->Instance->CCR &= ~DMA_CCR_EN;
|
||||
|
||||
/* Configure the source, destination address and the data length */
|
||||
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
hdma->Instance->CCR |= DMA_CCR_EN;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
/* Remain BUSY */
|
||||
status = HAL_BUSY;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start the DMA Transfer with interrupt enabled.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @param SrcAddress The source memory Buffer address
|
||||
* @param DstAddress The destination memory Buffer address
|
||||
* @param DataLength The length of data to be transferred from source to destination
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_DMA_BUFFER_SIZE(DataLength));
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hdma);
|
||||
|
||||
if(HAL_DMA_STATE_READY == hdma->State)
|
||||
{
|
||||
/* Change DMA peripheral state */
|
||||
hdma->State = HAL_DMA_STATE_BUSY;
|
||||
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NONE;
|
||||
|
||||
/* Disable the peripheral */
|
||||
hdma->Instance->CCR &= ~DMA_CCR_EN;
|
||||
|
||||
/* Configure the source, destination address and the data length */
|
||||
DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength);
|
||||
|
||||
/* Enable the transfer complete, & transfer error interrupts */
|
||||
/* Half transfer interrupt is optional: enable it only if associated callback is available */
|
||||
if(NULL != hdma->XferHalfCpltCallback )
|
||||
{
|
||||
hdma->Instance->CCR |= (DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
|
||||
}
|
||||
else
|
||||
{
|
||||
hdma->Instance->CCR |= (DMA_IT_TC | DMA_IT_TE);
|
||||
hdma->Instance->CCR &= ~DMA_IT_HT;
|
||||
}
|
||||
|
||||
/* Enable the Peripheral */
|
||||
hdma->Instance->CCR |= DMA_CCR_EN;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
/* Remain BUSY */
|
||||
status = HAL_BUSY;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort the DMA Transfer.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
if(hdma->State != HAL_DMA_STATE_BUSY)
|
||||
{
|
||||
/* no transfer ongoing */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable DMA IT */
|
||||
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
|
||||
|
||||
/* Disable the channel */
|
||||
hdma->Instance->CCR &= ~DMA_CCR_EN;
|
||||
|
||||
/* Clear all flags */
|
||||
hdma->DmaBaseAddress->IFCR = (DMA_FLAG_GL1 << hdma->ChannelIndex);
|
||||
}
|
||||
/* Change the DMA state*/
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort the DMA Transfer in Interrupt mode.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Stream.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
if(HAL_DMA_STATE_BUSY != hdma->State)
|
||||
{
|
||||
/* no transfer ongoing */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
|
||||
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
/* Disable DMA IT */
|
||||
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
|
||||
|
||||
/* Disable the channel */
|
||||
hdma->Instance->CCR &= ~DMA_CCR_EN;
|
||||
|
||||
/* Clear all flags */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
|
||||
|
||||
/* Change the DMA state */
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
/* Call User Abort callback */
|
||||
if(hdma->XferAbortCallback != NULL)
|
||||
{
|
||||
hdma->XferAbortCallback(hdma);
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Polling for transfer complete.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @param CompleteLevel Specifies the DMA level complete.
|
||||
* @param Timeout Timeout duration.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout)
|
||||
{
|
||||
uint32_t temp;
|
||||
uint32_t tickstart = 0U;
|
||||
|
||||
if(HAL_DMA_STATE_BUSY != hdma->State)
|
||||
{
|
||||
/* no transfer ongoing */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NO_XFER;
|
||||
__HAL_UNLOCK(hdma);
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Polling mode not supported in circular mode */
|
||||
if (RESET != (hdma->Instance->CCR & DMA_CCR_CIRC))
|
||||
{
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_NOT_SUPPORTED;
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Get the level transfer complete flag */
|
||||
if(HAL_DMA_FULL_TRANSFER == CompleteLevel)
|
||||
{
|
||||
/* Transfer Complete flag */
|
||||
temp = DMA_FLAG_TC1 << hdma->ChannelIndex;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Half Transfer Complete flag */
|
||||
temp = DMA_FLAG_HT1 << hdma->ChannelIndex;
|
||||
}
|
||||
|
||||
/* Get tick */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
while(RESET == (hdma->DmaBaseAddress->ISR & temp))
|
||||
{
|
||||
if(RESET != (hdma->DmaBaseAddress->ISR & (DMA_FLAG_TE1 << hdma->ChannelIndex)))
|
||||
{
|
||||
/* When a DMA transfer error occurs */
|
||||
/* A hardware clear of its EN bits is performed */
|
||||
/* Clear all flags */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
|
||||
|
||||
/* Update error code */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_TE;
|
||||
|
||||
/* Change the DMA state */
|
||||
hdma->State= HAL_DMA_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
/* Check for the Timeout */
|
||||
if(Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
||||
{
|
||||
/* Update error code */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_TIMEOUT;
|
||||
|
||||
/* Change the DMA state */
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(HAL_DMA_FULL_TRANSFER == CompleteLevel)
|
||||
{
|
||||
/* Clear the transfer complete flag */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_TC1 << hdma->ChannelIndex;
|
||||
|
||||
/* The selected Channelx EN bit is cleared (DMA is disabled and
|
||||
all transfers are complete) */
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear the half transfer complete flag */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_HT1 << hdma->ChannelIndex;
|
||||
}
|
||||
|
||||
/* Process unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle DMA interrupt request.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
uint32_t flag_it = hdma->DmaBaseAddress->ISR;
|
||||
uint32_t source_it = hdma->Instance->CCR;
|
||||
|
||||
/* Half Transfer Complete Interrupt management ******************************/
|
||||
if ((RESET != (flag_it & (DMA_FLAG_HT1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_HT)))
|
||||
{
|
||||
/* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */
|
||||
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
|
||||
{
|
||||
/* Disable the half transfer interrupt */
|
||||
hdma->Instance->CCR &= ~DMA_IT_HT;
|
||||
}
|
||||
|
||||
/* Clear the half transfer complete flag */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_HT1 << hdma->ChannelIndex;
|
||||
|
||||
/* DMA peripheral state is not updated in Half Transfer */
|
||||
/* State is updated only in Transfer Complete case */
|
||||
|
||||
if(hdma->XferHalfCpltCallback != NULL)
|
||||
{
|
||||
/* Half transfer callback */
|
||||
hdma->XferHalfCpltCallback(hdma);
|
||||
}
|
||||
}
|
||||
|
||||
/* Transfer Complete Interrupt management ***********************************/
|
||||
else if ((RESET != (flag_it & (DMA_FLAG_TC1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TC)))
|
||||
{
|
||||
if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
|
||||
{
|
||||
/* Disable the transfer complete & transfer error interrupts */
|
||||
/* if the DMA mode is not CIRCULAR */
|
||||
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_TE);
|
||||
|
||||
/* Change the DMA state */
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
}
|
||||
|
||||
/* Clear the transfer complete flag */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_TC1 << hdma->ChannelIndex;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
if(hdma->XferCpltCallback != NULL)
|
||||
{
|
||||
/* Transfer complete callback */
|
||||
hdma->XferCpltCallback(hdma);
|
||||
}
|
||||
}
|
||||
|
||||
/* Transfer Error Interrupt management ***************************************/
|
||||
else if (( RESET != (flag_it & (DMA_FLAG_TE1 << hdma->ChannelIndex))) && (RESET != (source_it & DMA_IT_TE)))
|
||||
{
|
||||
/* When a DMA transfer error occurs */
|
||||
/* A hardware clear of its EN bits is performed */
|
||||
/* Then, disable all DMA interrupts */
|
||||
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);
|
||||
|
||||
/* Clear all flags */
|
||||
hdma->DmaBaseAddress->IFCR = DMA_FLAG_GL1 << hdma->ChannelIndex;
|
||||
|
||||
/* Update error code */
|
||||
hdma->ErrorCode = HAL_DMA_ERROR_TE;
|
||||
|
||||
/* Change the DMA state */
|
||||
hdma->State = HAL_DMA_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
if(hdma->XferErrorCallback != NULL)
|
||||
{
|
||||
/* Transfer error callback */
|
||||
hdma->XferErrorCallback(hdma);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Register callbacks
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Stream.
|
||||
* @param CallbackID User Callback identifer
|
||||
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
|
||||
* @param pCallback pointer to private callback function which has pointer to
|
||||
* a DMA_HandleTypeDef structure as parameter.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID, void (* pCallback)( DMA_HandleTypeDef * _hdma))
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hdma);
|
||||
|
||||
if(HAL_DMA_STATE_READY == hdma->State)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_DMA_XFER_CPLT_CB_ID:
|
||||
hdma->XferCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_HALFCPLT_CB_ID:
|
||||
hdma->XferHalfCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_ERROR_CB_ID:
|
||||
hdma->XferErrorCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_ABORT_CB_ID:
|
||||
hdma->XferAbortCallback = pCallback;
|
||||
break;
|
||||
|
||||
default:
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UnRegister callbacks
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Stream.
|
||||
* @param CallbackID User Callback identifer
|
||||
* a HAL_DMA_CallbackIDTypeDef ENUM as parameter.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_DMA_UnRegisterCallback(DMA_HandleTypeDef *hdma, HAL_DMA_CallbackIDTypeDef CallbackID)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hdma);
|
||||
|
||||
if(HAL_DMA_STATE_READY == hdma->State)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_DMA_XFER_CPLT_CB_ID:
|
||||
hdma->XferCpltCallback = NULL;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_HALFCPLT_CB_ID:
|
||||
hdma->XferHalfCpltCallback = NULL;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_ERROR_CB_ID:
|
||||
hdma->XferErrorCallback = NULL;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_ABORT_CB_ID:
|
||||
hdma->XferAbortCallback = NULL;
|
||||
break;
|
||||
|
||||
case HAL_DMA_XFER_ALL_CB_ID:
|
||||
hdma->XferCpltCallback = NULL;
|
||||
hdma->XferHalfCpltCallback = NULL;
|
||||
hdma->XferErrorCallback = NULL;
|
||||
hdma->XferAbortCallback = NULL;
|
||||
break;
|
||||
|
||||
default:
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(hdma);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup DMA_Exported_Functions_Group3 Peripheral State functions
|
||||
* @brief Peripheral State functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### State and Errors functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides functions allowing to
|
||||
(+) Check the DMA state
|
||||
(+) Get error code
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Returns the DMA state.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @retval HAL state
|
||||
*/
|
||||
HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
return hdma->State;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the DMA error code
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @retval DMA Error Code
|
||||
*/
|
||||
uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
return hdma->ErrorCode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup DMA_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Set the DMA Transfer parameters.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Channel.
|
||||
* @param SrcAddress The source memory Buffer address
|
||||
* @param DstAddress The destination memory Buffer address
|
||||
* @param DataLength The length of data to be transferred from source to destination
|
||||
* @retval HAL status
|
||||
*/
|
||||
static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength)
|
||||
{
|
||||
/* Clear all flags */
|
||||
hdma->DmaBaseAddress->IFCR = (DMA_FLAG_GL1 << hdma->ChannelIndex);
|
||||
|
||||
/* Configure DMA Channel data length */
|
||||
hdma->Instance->CNDTR = DataLength;
|
||||
|
||||
/* Memory to Peripheral */
|
||||
if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH)
|
||||
{
|
||||
/* Configure DMA Channel destination address */
|
||||
hdma->Instance->CPAR = DstAddress;
|
||||
|
||||
/* Configure DMA Channel source address */
|
||||
hdma->Instance->CMAR = SrcAddress;
|
||||
}
|
||||
/* Peripheral to Memory */
|
||||
else
|
||||
{
|
||||
/* Configure DMA Channel source address */
|
||||
hdma->Instance->CPAR = SrcAddress;
|
||||
|
||||
/* Configure DMA Channel destination address */
|
||||
hdma->Instance->CMAR = DstAddress;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief set the DMA base address and channel index depending on DMA instance
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA Stream.
|
||||
* @retval None
|
||||
*/
|
||||
static void DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
#if defined (DMA2)
|
||||
/* calculation of the channel index */
|
||||
if ((uint32_t)(hdma->Instance) < (uint32_t)(DMA2_Channel1))
|
||||
{
|
||||
/* DMA1 */
|
||||
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U;
|
||||
hdma->DmaBaseAddress = DMA1;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* DMA2 */
|
||||
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA2_Channel1) / ((uint32_t)DMA2_Channel2 - (uint32_t)DMA2_Channel1)) << 2U;
|
||||
hdma->DmaBaseAddress = DMA2;
|
||||
}
|
||||
#else
|
||||
/* calculation of the channel index */
|
||||
/* DMA1 */
|
||||
hdma->ChannelIndex = (((uint32_t)hdma->Instance - (uint32_t)DMA1_Channel1) / ((uint32_t)DMA1_Channel2 - (uint32_t)DMA1_Channel1)) << 2U;
|
||||
hdma->DmaBaseAddress = DMA1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
#endif /* HAL_DMA_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
549
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c
Normal file
549
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_exti.c
Normal file
@@ -0,0 +1,549 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_exti.c
|
||||
* @author MCD Application Team
|
||||
* @brief EXTI HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the Extended Interrupts and events controller (EXTI) peripheral:
|
||||
* + Initialization and de-initialization functions
|
||||
* + IO operation functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### EXTI Peripheral features #####
|
||||
==============================================================================
|
||||
[..]
|
||||
(+) Each Exti line can be configured within this driver.
|
||||
|
||||
(+) Exti line can be configured in 3 different modes
|
||||
(++) Interrupt
|
||||
(++) Event
|
||||
(++) Both of them
|
||||
|
||||
(+) Configurable Exti lines can be configured with 3 different triggers
|
||||
(++) Rising
|
||||
(++) Falling
|
||||
(++) Both of them
|
||||
|
||||
(+) When set in interrupt mode, configurable Exti lines have two different
|
||||
interrupts pending registers which allow to distinguish which transition
|
||||
occurs:
|
||||
(++) Rising edge pending interrupt
|
||||
(++) Falling
|
||||
|
||||
(+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
|
||||
be selected through multiplexer.
|
||||
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..]
|
||||
|
||||
(#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
|
||||
(++) Choose the interrupt line number by setting "Line" member from
|
||||
EXTI_ConfigTypeDef structure.
|
||||
(++) Configure the interrupt and/or event mode using "Mode" member from
|
||||
EXTI_ConfigTypeDef structure.
|
||||
(++) For configurable lines, configure rising and/or falling trigger
|
||||
"Trigger" member from EXTI_ConfigTypeDef structure.
|
||||
(++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
|
||||
member from GPIO_InitTypeDef structure.
|
||||
|
||||
(#) Get current Exti configuration of a dedicated line using
|
||||
HAL_EXTI_GetConfigLine().
|
||||
(++) Provide exiting handle as parameter.
|
||||
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
|
||||
|
||||
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
|
||||
(++) Provide exiting handle as parameter.
|
||||
|
||||
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
|
||||
(++) Provide exiting handle as first parameter.
|
||||
(++) Provide which callback will be registered using one value from
|
||||
EXTI_CallbackIDTypeDef.
|
||||
(++) Provide callback function pointer.
|
||||
|
||||
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
|
||||
|
||||
(#) Clear interrupt pending bit using HAL_EXTI_GetPending().
|
||||
|
||||
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2019 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup EXTI
|
||||
* @{
|
||||
*/
|
||||
/** MISRA C:2012 deviation rule has been granted for following rule:
|
||||
* Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
|
||||
* of bounds [0,3] in following API :
|
||||
* HAL_EXTI_SetConfigLine
|
||||
* HAL_EXTI_GetConfigLine
|
||||
* HAL_EXTI_ClearConfigLine
|
||||
*/
|
||||
|
||||
#ifdef HAL_EXTI_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private defines -----------------------------------------------------------*/
|
||||
/** @defgroup EXTI_Private_Constants EXTI Private Constants
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @addtogroup EXTI_Exported_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup EXTI_Exported_Functions_Group1
|
||||
* @brief Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Configuration functions #####
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Set configuration of a dedicated Exti line.
|
||||
* @param hexti Exti handle.
|
||||
* @param pExtiConfig Pointer on EXTI configuration to be set.
|
||||
* @retval HAL Status.
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
|
||||
{
|
||||
uint32_t regval;
|
||||
uint32_t linepos;
|
||||
uint32_t maskline;
|
||||
|
||||
/* Check null pointer */
|
||||
if ((hexti == NULL) || (pExtiConfig == NULL))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_EXTI_LINE(pExtiConfig->Line));
|
||||
assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
|
||||
|
||||
/* Assign line number to handle */
|
||||
hexti->Line = pExtiConfig->Line;
|
||||
|
||||
/* Compute line mask */
|
||||
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
|
||||
maskline = (1uL << linepos);
|
||||
|
||||
/* Configure triggers for configurable lines */
|
||||
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
|
||||
{
|
||||
assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
|
||||
|
||||
/* Configure rising trigger */
|
||||
/* Mask or set line */
|
||||
if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u)
|
||||
{
|
||||
EXTI->RTSR |= maskline;
|
||||
}
|
||||
else
|
||||
{
|
||||
EXTI->RTSR &= ~maskline;
|
||||
}
|
||||
|
||||
/* Configure falling trigger */
|
||||
/* Mask or set line */
|
||||
if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u)
|
||||
{
|
||||
EXTI->FTSR |= maskline;
|
||||
}
|
||||
else
|
||||
{
|
||||
EXTI->FTSR &= ~maskline;
|
||||
}
|
||||
|
||||
|
||||
/* Configure gpio port selection in case of gpio exti line */
|
||||
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
|
||||
{
|
||||
assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
|
||||
assert_param(IS_EXTI_GPIO_PIN(linepos));
|
||||
|
||||
regval = SYSCFG->EXTICR[linepos >> 2u];
|
||||
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
|
||||
regval |= (pExtiConfig->GPIOSel << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
|
||||
SYSCFG->EXTICR[linepos >> 2u] = regval;
|
||||
}
|
||||
}
|
||||
|
||||
/* Configure interrupt mode : read current mode */
|
||||
/* Mask or set line */
|
||||
if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u)
|
||||
{
|
||||
EXTI->IMR |= maskline;
|
||||
}
|
||||
else
|
||||
{
|
||||
EXTI->IMR &= ~maskline;
|
||||
}
|
||||
|
||||
/* Configure event mode : read current mode */
|
||||
/* Mask or set line */
|
||||
if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u)
|
||||
{
|
||||
EXTI->EMR |= maskline;
|
||||
}
|
||||
else
|
||||
{
|
||||
EXTI->EMR &= ~maskline;
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get configuration of a dedicated Exti line.
|
||||
* @param hexti Exti handle.
|
||||
* @param pExtiConfig Pointer on structure to store Exti configuration.
|
||||
* @retval HAL Status.
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
|
||||
{
|
||||
uint32_t regval;
|
||||
uint32_t linepos;
|
||||
uint32_t maskline;
|
||||
|
||||
/* Check null pointer */
|
||||
if ((hexti == NULL) || (pExtiConfig == NULL))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameter */
|
||||
assert_param(IS_EXTI_LINE(hexti->Line));
|
||||
|
||||
/* Store handle line number to configuration structure */
|
||||
pExtiConfig->Line = hexti->Line;
|
||||
|
||||
/* Compute line mask */
|
||||
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
|
||||
maskline = (1uL << linepos);
|
||||
|
||||
/* 1] Get core mode : interrupt */
|
||||
|
||||
/* Check if selected line is enable */
|
||||
if ((EXTI->IMR & maskline) != 0x00u)
|
||||
{
|
||||
pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
|
||||
}
|
||||
else
|
||||
{
|
||||
pExtiConfig->Mode = EXTI_MODE_NONE;
|
||||
}
|
||||
|
||||
/* Get event mode */
|
||||
/* Check if selected line is enable */
|
||||
if ((EXTI->EMR & maskline) != 0x00u)
|
||||
{
|
||||
pExtiConfig->Mode |= EXTI_MODE_EVENT;
|
||||
}
|
||||
|
||||
/* Get default Trigger and GPIOSel configuration */
|
||||
pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
|
||||
pExtiConfig->GPIOSel = 0x00u;
|
||||
|
||||
/* 2] Get trigger for configurable lines : rising */
|
||||
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
|
||||
{
|
||||
/* Check if configuration of selected line is enable */
|
||||
if ((EXTI->RTSR & maskline) != 0x00u)
|
||||
{
|
||||
pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
|
||||
}
|
||||
|
||||
/* Get falling configuration */
|
||||
/* Check if configuration of selected line is enable */
|
||||
if ((EXTI->FTSR & maskline) != 0x00u)
|
||||
{
|
||||
pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
|
||||
}
|
||||
|
||||
/* Get Gpio port selection for gpio lines */
|
||||
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
|
||||
{
|
||||
assert_param(IS_EXTI_GPIO_PIN(linepos));
|
||||
|
||||
regval = SYSCFG->EXTICR[linepos >> 2u];
|
||||
pExtiConfig->GPIOSel = ((regval << (SYSCFG_EXTICR1_EXTI1_Pos * (3uL - (linepos & 0x03u)))) >> 24);
|
||||
}
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clear whole configuration of a dedicated Exti line.
|
||||
* @param hexti Exti handle.
|
||||
* @retval HAL Status.
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti)
|
||||
{
|
||||
uint32_t regval;
|
||||
uint32_t linepos;
|
||||
uint32_t maskline;
|
||||
|
||||
/* Check null pointer */
|
||||
if (hexti == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameter */
|
||||
assert_param(IS_EXTI_LINE(hexti->Line));
|
||||
|
||||
/* compute line mask */
|
||||
linepos = (hexti->Line & EXTI_PIN_MASK);
|
||||
maskline = (1uL << linepos);
|
||||
|
||||
/* 1] Clear interrupt mode */
|
||||
EXTI->IMR = (EXTI->IMR & ~maskline);
|
||||
|
||||
/* 2] Clear event mode */
|
||||
EXTI->EMR = (EXTI->EMR & ~maskline);
|
||||
|
||||
/* 3] Clear triggers in case of configurable lines */
|
||||
if ((hexti->Line & EXTI_CONFIG) != 0x00u)
|
||||
{
|
||||
EXTI->RTSR = (EXTI->RTSR & ~maskline);
|
||||
EXTI->FTSR = (EXTI->FTSR & ~maskline);
|
||||
|
||||
/* Get Gpio port selection for gpio lines */
|
||||
if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO)
|
||||
{
|
||||
assert_param(IS_EXTI_GPIO_PIN(linepos));
|
||||
|
||||
regval = SYSCFG->EXTICR[linepos >> 2u];
|
||||
regval &= ~(SYSCFG_EXTICR1_EXTI0 << (SYSCFG_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
|
||||
SYSCFG->EXTICR[linepos >> 2u] = regval;
|
||||
}
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Register callback for a dedicated Exti line.
|
||||
* @param hexti Exti handle.
|
||||
* @param CallbackID User callback identifier.
|
||||
* This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
|
||||
* @param pPendingCbfn function pointer to be stored as callback.
|
||||
* @retval HAL Status.
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void))
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_EXTI_COMMON_CB_ID:
|
||||
hexti->PendingCallback = pPendingCbfn;
|
||||
break;
|
||||
|
||||
default:
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Store line number as handle private field.
|
||||
* @param hexti Exti handle.
|
||||
* @param ExtiLine Exti line number.
|
||||
* This parameter can be from 0 to @ref EXTI_LINE_NB.
|
||||
* @retval HAL Status.
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_EXTI_LINE(ExtiLine));
|
||||
|
||||
/* Check null pointer */
|
||||
if (hexti == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Store line number as handle private field */
|
||||
hexti->Line = ExtiLine;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup EXTI_Exported_Functions_Group2
|
||||
* @brief EXTI IO functions.
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Handle EXTI interrupt request.
|
||||
* @param hexti Exti handle.
|
||||
* @retval none.
|
||||
*/
|
||||
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti)
|
||||
{
|
||||
uint32_t regval;
|
||||
uint32_t maskline;
|
||||
|
||||
/* Compute line mask */
|
||||
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
|
||||
|
||||
/* Get pending bit */
|
||||
regval = (EXTI->PR & maskline);
|
||||
if (regval != 0x00u)
|
||||
{
|
||||
/* Clear pending bit */
|
||||
EXTI->PR = maskline;
|
||||
|
||||
/* Call callback */
|
||||
if (hexti->PendingCallback != NULL)
|
||||
{
|
||||
hexti->PendingCallback();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get interrupt pending bit of a dedicated line.
|
||||
* @param hexti Exti handle.
|
||||
* @param Edge Specify which pending edge as to be checked.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref EXTI_TRIGGER_RISING_FALLING
|
||||
* This parameter is kept for compatibility with other series.
|
||||
* @retval 1 if interrupt is pending else 0.
|
||||
*/
|
||||
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
|
||||
{
|
||||
uint32_t regval;
|
||||
uint32_t linepos;
|
||||
uint32_t maskline;
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_EXTI_LINE(hexti->Line));
|
||||
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
|
||||
assert_param(IS_EXTI_PENDING_EDGE(Edge));
|
||||
|
||||
/* Compute line mask */
|
||||
linepos = (hexti->Line & EXTI_PIN_MASK);
|
||||
maskline = (1uL << linepos);
|
||||
|
||||
/* return 1 if bit is set else 0 */
|
||||
regval = ((EXTI->PR & maskline) >> linepos);
|
||||
return regval;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Clear interrupt pending bit of a dedicated line.
|
||||
* @param hexti Exti handle.
|
||||
* @param Edge Specify which pending edge as to be clear.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref EXTI_TRIGGER_RISING_FALLING
|
||||
* This parameter is kept for compatibility with other series.
|
||||
* @retval None.
|
||||
*/
|
||||
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
|
||||
{
|
||||
uint32_t maskline;
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_EXTI_LINE(hexti->Line));
|
||||
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
|
||||
assert_param(IS_EXTI_PENDING_EDGE(Edge));
|
||||
|
||||
/* Compute line mask */
|
||||
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
|
||||
|
||||
/* Clear Pending bit */
|
||||
EXTI->PR = maskline;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generate a software interrupt for a dedicated line.
|
||||
* @param hexti Exti handle.
|
||||
* @retval None.
|
||||
*/
|
||||
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti)
|
||||
{
|
||||
uint32_t maskline;
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_EXTI_LINE(hexti->Line));
|
||||
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
|
||||
|
||||
/* Compute line mask */
|
||||
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
|
||||
|
||||
/* Generate Software interrupt */
|
||||
EXTI->SWIER = maskline;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_EXTI_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
694
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c
Normal file
694
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash.c
Normal file
@@ -0,0 +1,694 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_flash.c
|
||||
* @author MCD Application Team
|
||||
* @brief FLASH HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the internal FLASH memory:
|
||||
* + Program operations functions
|
||||
* + Memory Control functions
|
||||
* + Peripheral State functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### FLASH peripheral features #####
|
||||
==============================================================================
|
||||
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
|
||||
to the Flash memory. It implements the erase and program Flash memory operations
|
||||
and the read and write protection mechanisms.
|
||||
|
||||
[..] The Flash memory interface accelerates code execution with a system of instruction
|
||||
prefetch.
|
||||
|
||||
[..] The FLASH main features are:
|
||||
(+) Flash memory read operations
|
||||
(+) Flash memory program/erase operations
|
||||
(+) Read / write protections
|
||||
(+) Prefetch on I-Code
|
||||
(+) Option Bytes programming
|
||||
|
||||
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..]
|
||||
This driver provides functions and macros to configure and program the FLASH
|
||||
memory of all STM32F0xx devices.
|
||||
|
||||
(#) FLASH Memory I/O Programming functions: this group includes all needed
|
||||
functions to erase and program the main memory:
|
||||
(++) Lock and Unlock the FLASH interface
|
||||
(++) Erase function: Erase page, erase all pages
|
||||
(++) Program functions: half word, word and doubleword
|
||||
(#) FLASH Option Bytes Programming functions: this group includes all needed
|
||||
functions to manage the Option Bytes:
|
||||
(++) Lock and Unlock the Option Bytes
|
||||
(++) Set/Reset the write protection
|
||||
(++) Set the Read protection Level
|
||||
(++) Program the user Option Bytes
|
||||
(++) Launch the Option Bytes loader
|
||||
(++) Erase Option Bytes
|
||||
(++) Program the data Option Bytes
|
||||
(++) Get the Write protection.
|
||||
(++) Get the user option bytes.
|
||||
|
||||
(#) Interrupts and flags management functions : this group
|
||||
includes all needed functions to:
|
||||
(++) Handle FLASH interrupts
|
||||
(++) Wait for last FLASH operation according to its status
|
||||
(++) Get error flag status
|
||||
|
||||
[..] In addition to these function, this driver includes a set of macros allowing
|
||||
to handle the following operations:
|
||||
|
||||
(+) Set/Get the latency
|
||||
(+) Enable/Disable the prefetch buffer
|
||||
(+) Enable/Disable the FLASH interrupts
|
||||
(+) Monitor the FLASH flags status
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_FLASH_MODULE_ENABLED
|
||||
|
||||
/** @defgroup FLASH FLASH
|
||||
* @brief FLASH HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/** @defgroup FLASH_Private_Constants FLASH Private Constants
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macro ---------------------------- ---------------------------------*/
|
||||
/** @defgroup FLASH_Private_Macros FLASH Private Macros
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/** @defgroup FLASH_Private_Variables FLASH Private Variables
|
||||
* @{
|
||||
*/
|
||||
/* Variables used for Erase pages under interruption*/
|
||||
FLASH_ProcessTypeDef pFlash;
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup FLASH_Private_Functions FLASH Private Functions
|
||||
* @{
|
||||
*/
|
||||
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
|
||||
static void FLASH_SetErrorCode(void);
|
||||
extern void FLASH_PageErase(uint32_t PageAddress);
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions ---------------------------------------------------------*/
|
||||
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
|
||||
* @brief Programming operation functions
|
||||
*
|
||||
@verbatim
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Program halfword, word or double word at a specified address
|
||||
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
|
||||
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
|
||||
*
|
||||
* @note If an erase and a program operations are requested simultaneously,
|
||||
* the erase operation is performed before the program one.
|
||||
*
|
||||
* @note FLASH should be previously erased before new programming (only exception to this
|
||||
* is when 0x0000 is programmed)
|
||||
*
|
||||
* @param TypeProgram Indicate the way to program at a specified address.
|
||||
* This parameter can be a value of @ref FLASH_Type_Program
|
||||
* @param Address Specifie the address to be programmed.
|
||||
* @param Data Specifie the data to be programmed
|
||||
*
|
||||
* @retval HAL_StatusTypeDef HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_ERROR;
|
||||
uint8_t index = 0U;
|
||||
uint8_t nbiterations = 0U;
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(&pFlash);
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
|
||||
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
|
||||
{
|
||||
/* Program halfword (16-bit) at a specified address. */
|
||||
nbiterations = 1U;
|
||||
}
|
||||
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
|
||||
{
|
||||
/* Program word (32-bit = 2*16-bit) at a specified address. */
|
||||
nbiterations = 2U;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Program double word (64-bit = 4*16-bit) at a specified address. */
|
||||
nbiterations = 4U;
|
||||
}
|
||||
|
||||
for (index = 0U; index < nbiterations; index++)
|
||||
{
|
||||
FLASH_Program_HalfWord((Address + (2U*index)), (uint16_t)(Data >> (16U*index)));
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* If the program operation is completed, disable the PG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
|
||||
/* In case of error, stop programming procedure */
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Program halfword, word or double word at a specified address with interrupt enabled.
|
||||
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
|
||||
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
|
||||
*
|
||||
* @note If an erase and a program operations are requested simultaneously,
|
||||
* the erase operation is performed before the program one.
|
||||
*
|
||||
* @param TypeProgram Indicate the way to program at a specified address.
|
||||
* This parameter can be a value of @ref FLASH_Type_Program
|
||||
* @param Address Specifie the address to be programmed.
|
||||
* @param Data Specifie the data to be programmed
|
||||
*
|
||||
* @retval HAL_StatusTypeDef HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(&pFlash);
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
|
||||
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
|
||||
|
||||
/* Enable End of FLASH Operation and Error source interrupts */
|
||||
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
|
||||
|
||||
pFlash.Address = Address;
|
||||
pFlash.Data = Data;
|
||||
|
||||
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
|
||||
{
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
|
||||
/* Program halfword (16-bit) at a specified address. */
|
||||
pFlash.DataRemaining = 1U;
|
||||
}
|
||||
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
|
||||
{
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
|
||||
/* Program word (32-bit : 2*16-bit) at a specified address. */
|
||||
pFlash.DataRemaining = 2U;
|
||||
}
|
||||
else
|
||||
{
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
|
||||
/* Program double word (64-bit : 4*16-bit) at a specified address. */
|
||||
pFlash.DataRemaining = 4U;
|
||||
}
|
||||
|
||||
/* Program halfword (16-bit) at a specified address. */
|
||||
FLASH_Program_HalfWord(Address, (uint16_t)Data);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function handles FLASH interrupt request.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_FLASH_IRQHandler(void)
|
||||
{
|
||||
uint32_t addresstmp = 0U;
|
||||
|
||||
/* Check FLASH operation error flags */
|
||||
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
|
||||
{
|
||||
/* Return the faulty address */
|
||||
addresstmp = pFlash.Address;
|
||||
/* Reset address */
|
||||
pFlash.Address = 0xFFFFFFFFU;
|
||||
|
||||
/* Save the Error code */
|
||||
FLASH_SetErrorCode();
|
||||
|
||||
/* FLASH error interrupt user callback */
|
||||
HAL_FLASH_OperationErrorCallback(addresstmp);
|
||||
|
||||
/* Stop the procedure ongoing */
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
|
||||
}
|
||||
|
||||
/* Check FLASH End of Operation flag */
|
||||
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
|
||||
{
|
||||
/* Clear FLASH End of Operation pending bit */
|
||||
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
|
||||
|
||||
/* Process can continue only if no error detected */
|
||||
if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
|
||||
{
|
||||
if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
|
||||
{
|
||||
/* Nb of pages to erased can be decreased */
|
||||
pFlash.DataRemaining--;
|
||||
|
||||
/* Check if there are still pages to erase */
|
||||
if(pFlash.DataRemaining != 0U)
|
||||
{
|
||||
addresstmp = pFlash.Address;
|
||||
/*Indicate user which sector has been erased */
|
||||
HAL_FLASH_EndOfOperationCallback(addresstmp);
|
||||
|
||||
/*Increment sector number*/
|
||||
addresstmp = pFlash.Address + FLASH_PAGE_SIZE;
|
||||
pFlash.Address = addresstmp;
|
||||
|
||||
/* If the erase operation is completed, disable the PER Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
|
||||
|
||||
FLASH_PageErase(addresstmp);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No more pages to Erase, user callback can be called. */
|
||||
/* Reset Sector and stop Erase pages procedure */
|
||||
pFlash.Address = addresstmp = 0xFFFFFFFFU;
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
|
||||
/* FLASH EOP interrupt user callback */
|
||||
HAL_FLASH_EndOfOperationCallback(addresstmp);
|
||||
}
|
||||
}
|
||||
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
|
||||
{
|
||||
/* Operation is completed, disable the MER Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
|
||||
|
||||
/* MassErase ended. Return the selected bank */
|
||||
/* FLASH EOP interrupt user callback */
|
||||
HAL_FLASH_EndOfOperationCallback(0);
|
||||
|
||||
/* Stop Mass Erase procedure*/
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Nb of 16-bit data to program can be decreased */
|
||||
pFlash.DataRemaining--;
|
||||
|
||||
/* Check if there are still 16-bit data to program */
|
||||
if(pFlash.DataRemaining != 0U)
|
||||
{
|
||||
/* Increment address to 16-bit */
|
||||
pFlash.Address += 2;
|
||||
addresstmp = pFlash.Address;
|
||||
|
||||
/* Shift to have next 16-bit data */
|
||||
pFlash.Data = (pFlash.Data >> 16U);
|
||||
|
||||
/* Operation is completed, disable the PG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
|
||||
|
||||
/*Program halfword (16-bit) at a specified address.*/
|
||||
FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Program ended. Return the selected address */
|
||||
/* FLASH EOP interrupt user callback */
|
||||
if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
|
||||
{
|
||||
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
|
||||
}
|
||||
else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
|
||||
{
|
||||
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U);
|
||||
}
|
||||
else
|
||||
{
|
||||
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U);
|
||||
}
|
||||
|
||||
/* Reset Address and stop Program procedure */
|
||||
pFlash.Address = 0xFFFFFFFFU;
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
|
||||
{
|
||||
/* Operation is completed, disable the PG, PER and MER Bits */
|
||||
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
|
||||
|
||||
/* Disable End of FLASH Operation and Error source interrupts */
|
||||
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief FLASH end of operation interrupt callback
|
||||
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
|
||||
* - Mass Erase: No return value expected
|
||||
* - Pages Erase: Address of the page which has been erased
|
||||
* (if 0xFFFFFFFF, it means that all the selected pages have been erased)
|
||||
* - Program: Address which was selected for data program
|
||||
* @retval none
|
||||
*/
|
||||
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(ReturnValue);
|
||||
|
||||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||||
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief FLASH operation error interrupt callback
|
||||
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
|
||||
* - Mass Erase: No return value expected
|
||||
* - Pages Erase: Address of the page which returned an error
|
||||
* - Program: Address which was selected for data program
|
||||
* @retval none
|
||||
*/
|
||||
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(ReturnValue);
|
||||
|
||||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||||
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
|
||||
* @brief management functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to control the FLASH
|
||||
memory operations.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Unlock the FLASH control register access
|
||||
* @retval HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
|
||||
{
|
||||
/* Authorize the FLASH Registers access */
|
||||
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
|
||||
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
|
||||
|
||||
/* Verify Flash is unlocked */
|
||||
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
|
||||
{
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Locks the FLASH control register access
|
||||
* @retval HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_Lock(void)
|
||||
{
|
||||
/* Set the LOCK Bit to lock the FLASH Registers access */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Unlock the FLASH Option Control Registers access.
|
||||
* @retval HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
|
||||
{
|
||||
if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE))
|
||||
{
|
||||
/* Authorizes the Option Byte register programming */
|
||||
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
|
||||
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Lock the FLASH Option Control Registers access.
|
||||
* @retval HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
|
||||
{
|
||||
/* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Launch the option byte loading.
|
||||
* @note This function will reset automatically the MCU.
|
||||
* @retval HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
|
||||
{
|
||||
/* Set the OBL_Launch bit to launch the option byte loading */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH);
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
return(FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE));
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral errors functions
|
||||
* @brief Peripheral errors functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral Errors functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection permit to get in run-time errors of the FLASH peripheral.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Get the specific FLASH error flag.
|
||||
* @retval FLASH_ErrorCode The returned value can be:
|
||||
* @ref FLASH_Error_Codes
|
||||
*/
|
||||
uint32_t HAL_FLASH_GetError(void)
|
||||
{
|
||||
return pFlash.ErrorCode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup FLASH_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Program a half-word (16-bit) at a specified address.
|
||||
* @param Address specify the address to be programmed.
|
||||
* @param Data specify the data to be programmed.
|
||||
* @retval None
|
||||
*/
|
||||
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* Proceed to program the new data */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_PG);
|
||||
|
||||
/* Write data in the address */
|
||||
*(__IO uint16_t*)Address = Data;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Wait for a FLASH operation to complete.
|
||||
* @param Timeout maximum flash operation timeout
|
||||
* @retval HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
|
||||
{
|
||||
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
|
||||
Even if the FLASH operation fails, the BUSY flag will be reset and an error
|
||||
flag will be set */
|
||||
|
||||
uint32_t tickstart = HAL_GetTick();
|
||||
|
||||
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY))
|
||||
{
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check FLASH End of Operation flag */
|
||||
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
|
||||
{
|
||||
/* Clear FLASH End of Operation pending bit */
|
||||
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
|
||||
}
|
||||
|
||||
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||
|
||||
__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
|
||||
{
|
||||
/*Save the error code*/
|
||||
FLASH_SetErrorCode();
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* There is no error flag set */
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Set the specific FLASH error flag.
|
||||
* @retval None
|
||||
*/
|
||||
static void FLASH_SetErrorCode(void)
|
||||
{
|
||||
uint32_t flags = 0U;
|
||||
|
||||
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
|
||||
{
|
||||
pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
|
||||
flags |= FLASH_FLAG_WRPERR;
|
||||
}
|
||||
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
|
||||
{
|
||||
pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG;
|
||||
flags |= FLASH_FLAG_PGERR;
|
||||
}
|
||||
/* Clear FLASH error pending bits */
|
||||
__HAL_FLASH_CLEAR_FLAG(flags);
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_FLASH_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
984
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c
Normal file
984
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_flash_ex.c
Normal file
@@ -0,0 +1,984 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_flash_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended FLASH HAL module driver.
|
||||
*
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the FLASH peripheral:
|
||||
* + Extended Initialization/de-initialization functions
|
||||
* + Extended I/O operation functions
|
||||
* + Extended Peripheral Control functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### Flash peripheral extended features #####
|
||||
==============================================================================
|
||||
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..] This driver provides functions to configure and program the FLASH memory
|
||||
of all STM32F0xxx devices. It includes
|
||||
|
||||
(++) Set/Reset the write protection
|
||||
(++) Program the user Option Bytes
|
||||
(++) Get the Read protection Level
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
#ifdef HAL_FLASH_MODULE_ENABLED
|
||||
|
||||
/** @addtogroup FLASH
|
||||
* @{
|
||||
*/
|
||||
/** @addtogroup FLASH_Private_Variables
|
||||
* @{
|
||||
*/
|
||||
/* Variables used for Erase pages under interruption*/
|
||||
extern FLASH_ProcessTypeDef pFlash;
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FLASHEx FLASHEx
|
||||
* @brief FLASH HAL Extension module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/** @defgroup FLASHEx_Private_Constants FLASHEx Private Constants
|
||||
* @{
|
||||
*/
|
||||
#define FLASH_POSITION_IWDGSW_BIT 8U
|
||||
#define FLASH_POSITION_OB_USERDATA0_BIT 16U
|
||||
#define FLASH_POSITION_OB_USERDATA1_BIT 24U
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/** @defgroup FLASHEx_Private_Macros FLASHEx Private Macros
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
|
||||
* @{
|
||||
*/
|
||||
/* Erase operations */
|
||||
static void FLASH_MassErase(void);
|
||||
void FLASH_PageErase(uint32_t PageAddress);
|
||||
|
||||
/* Option bytes control */
|
||||
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage);
|
||||
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage);
|
||||
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel);
|
||||
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig);
|
||||
static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data);
|
||||
static uint32_t FLASH_OB_GetWRP(void);
|
||||
static uint32_t FLASH_OB_GetRDP(void);
|
||||
static uint8_t FLASH_OB_GetUser(void);
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions ---------------------------------------------------------*/
|
||||
/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup FLASHEx_Exported_Functions_Group1 FLASHEx Memory Erasing functions
|
||||
* @brief FLASH Memory Erasing functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### FLASH Erasing Programming functions #####
|
||||
==============================================================================
|
||||
|
||||
[..] The FLASH Memory Erasing functions, includes the following functions:
|
||||
(+) HAL_FLASHEx_Erase: return only when erase has been done
|
||||
(+) HAL_FLASHEx_Erase_IT: end of erase is done when HAL_FLASH_EndOfOperationCallback
|
||||
is called with parameter 0xFFFFFFFF
|
||||
|
||||
[..] Any operation of erase should follow these steps:
|
||||
(#) Call the HAL_FLASH_Unlock() function to enable the flash control register and
|
||||
program memory access.
|
||||
(#) Call the desired function to erase page.
|
||||
(#) Call the HAL_FLASH_Lock() to disable the flash program memory access
|
||||
(recommended to protect the FLASH memory against possible unwanted operation).
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Perform a mass erase or erase the specified FLASH memory pages
|
||||
* @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
|
||||
* must be called before.
|
||||
* Call the @ref HAL_FLASH_Lock() to disable the flash memory access
|
||||
* (recommended to protect the FLASH memory against possible unwanted operation)
|
||||
* @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
|
||||
* contains the configuration information for the erasing.
|
||||
*
|
||||
* @param[out] PageError pointer to variable that
|
||||
* contains the configuration information on faulty page in case of error
|
||||
* (0xFFFFFFFF means that all the pages have been correctly erased)
|
||||
*
|
||||
* @retval HAL_StatusTypeDef HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *PageError)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_ERROR;
|
||||
uint32_t address = 0U;
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(&pFlash);
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
|
||||
|
||||
if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
|
||||
{
|
||||
/* Mass Erase requested for Bank1 */
|
||||
/* Wait for last operation to be completed */
|
||||
if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
|
||||
{
|
||||
/*Mass erase to be done*/
|
||||
FLASH_MassErase();
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* If the erase operation is completed, disable the MER Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Page Erase is requested */
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
|
||||
assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
|
||||
|
||||
/* Page Erase requested on address located on bank1 */
|
||||
/* Wait for last operation to be completed */
|
||||
if (FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE) == HAL_OK)
|
||||
{
|
||||
/*Initialization of PageError variable*/
|
||||
*PageError = 0xFFFFFFFFU;
|
||||
|
||||
/* Erase page by page to be done*/
|
||||
for(address = pEraseInit->PageAddress;
|
||||
address < ((pEraseInit->NbPages * FLASH_PAGE_SIZE) + pEraseInit->PageAddress);
|
||||
address += FLASH_PAGE_SIZE)
|
||||
{
|
||||
FLASH_PageErase(address);
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* If the erase operation is completed, disable the PER Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
|
||||
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
/* In case of error, stop erase procedure and return the faulty address */
|
||||
*PageError = address;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform a mass erase or erase the specified FLASH memory pages with interrupt enabled
|
||||
* @note To correctly run this function, the @ref HAL_FLASH_Unlock() function
|
||||
* must be called before.
|
||||
* Call the @ref HAL_FLASH_Lock() to disable the flash memory access
|
||||
* (recommended to protect the FLASH memory against possible unwanted operation)
|
||||
* @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
|
||||
* contains the configuration information for the erasing.
|
||||
*
|
||||
* @retval HAL_StatusTypeDef HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(&pFlash);
|
||||
|
||||
/* If procedure already ongoing, reject the next one */
|
||||
if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
|
||||
|
||||
/* Enable End of FLASH Operation and Error source interrupts */
|
||||
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
|
||||
|
||||
if (pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
|
||||
{
|
||||
/*Mass erase to be done*/
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE;
|
||||
FLASH_MassErase();
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Erase by page to be done*/
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_FLASH_PROGRAM_ADDRESS(pEraseInit->PageAddress));
|
||||
assert_param(IS_FLASH_NB_PAGES(pEraseInit->PageAddress, pEraseInit->NbPages));
|
||||
|
||||
pFlash.ProcedureOnGoing = FLASH_PROC_PAGEERASE;
|
||||
pFlash.DataRemaining = pEraseInit->NbPages;
|
||||
pFlash.Address = pEraseInit->PageAddress;
|
||||
|
||||
/*Erase 1st page and wait for IT*/
|
||||
FLASH_PageErase(pEraseInit->PageAddress);
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup FLASHEx_Exported_Functions_Group2 Option Bytes Programming functions
|
||||
* @brief Option Bytes Programming functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### Option Bytes Programming functions #####
|
||||
==============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to control the FLASH
|
||||
option bytes operations.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Erases the FLASH option bytes.
|
||||
* @note This functions erases all option bytes except the Read protection (RDP).
|
||||
* The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
|
||||
* The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
|
||||
* The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
|
||||
* (system reset will occur)
|
||||
* @retval HAL status
|
||||
*/
|
||||
|
||||
HAL_StatusTypeDef HAL_FLASHEx_OBErase(void)
|
||||
{
|
||||
uint8_t rdptmp = OB_RDP_LEVEL_0;
|
||||
HAL_StatusTypeDef status = HAL_ERROR;
|
||||
|
||||
/* Get the actual read protection Option Byte value */
|
||||
rdptmp = FLASH_OB_GetRDP();
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* If the previous operation is completed, proceed to erase the option bytes */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTER);
|
||||
SET_BIT(FLASH->CR, FLASH_CR_STRT);
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* If the erase operation is completed, disable the OPTER Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Restore the last read protection Option Byte value */
|
||||
status = FLASH_OB_RDP_LevelConfig(rdptmp);
|
||||
}
|
||||
}
|
||||
|
||||
/* Return the erase status */
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Program option bytes
|
||||
* @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
|
||||
* The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
|
||||
* The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
|
||||
* (system reset will occur)
|
||||
*
|
||||
* @param pOBInit pointer to an FLASH_OBInitStruct structure that
|
||||
* contains the configuration information for the programming.
|
||||
*
|
||||
* @retval HAL_StatusTypeDef HAL Status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_ERROR;
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(&pFlash);
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
|
||||
|
||||
/* Write protection configuration */
|
||||
if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
|
||||
{
|
||||
assert_param(IS_WRPSTATE(pOBInit->WRPState));
|
||||
if (pOBInit->WRPState == OB_WRPSTATE_ENABLE)
|
||||
{
|
||||
/* Enable of Write protection on the selected page */
|
||||
status = FLASH_OB_EnableWRP(pOBInit->WRPPage);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Disable of Write protection on the selected page */
|
||||
status = FLASH_OB_DisableWRP(pOBInit->WRPPage);
|
||||
}
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read protection configuration */
|
||||
if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP)
|
||||
{
|
||||
status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel);
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
/* USER configuration */
|
||||
if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER)
|
||||
{
|
||||
status = FLASH_OB_UserConfig(pOBInit->USERConfig);
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
/* DATA configuration*/
|
||||
if((pOBInit->OptionType & OPTIONBYTE_DATA) == OPTIONBYTE_DATA)
|
||||
{
|
||||
status = FLASH_OB_ProgramData(pOBInit->DATAAddress, pOBInit->DATAData);
|
||||
if (status != HAL_OK)
|
||||
{
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(&pFlash);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the Option byte configuration
|
||||
* @param pOBInit pointer to an FLASH_OBInitStruct structure that
|
||||
* contains the configuration information for the programming.
|
||||
*
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
|
||||
{
|
||||
pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER;
|
||||
|
||||
/*Get WRP*/
|
||||
pOBInit->WRPPage = FLASH_OB_GetWRP();
|
||||
|
||||
/*Get RDP Level*/
|
||||
pOBInit->RDPLevel = FLASH_OB_GetRDP();
|
||||
|
||||
/*Get USER*/
|
||||
pOBInit->USERConfig = FLASH_OB_GetUser();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the Option byte user data
|
||||
* @param DATAAdress Address of the option byte DATA
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref OB_DATA_ADDRESS_DATA0
|
||||
* @arg @ref OB_DATA_ADDRESS_DATA1
|
||||
* @retval Value programmed in USER data
|
||||
*/
|
||||
uint32_t HAL_FLASHEx_OBGetUserData(uint32_t DATAAdress)
|
||||
{
|
||||
uint32_t value = 0U;
|
||||
|
||||
if (DATAAdress == OB_DATA_ADDRESS_DATA0)
|
||||
{
|
||||
/* Get value programmed in OB USER Data0 */
|
||||
value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA0) >> FLASH_POSITION_OB_USERDATA0_BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Get value programmed in OB USER Data1 */
|
||||
value = READ_BIT(FLASH->OBR, FLASH_OBR_DATA1) >> FLASH_POSITION_OB_USERDATA1_BIT;
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup FLASHEx_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Full erase of FLASH memory Bank
|
||||
*
|
||||
* @retval None
|
||||
*/
|
||||
static void FLASH_MassErase(void)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* Only bank1 will be erased*/
|
||||
SET_BIT(FLASH->CR, FLASH_CR_MER);
|
||||
SET_BIT(FLASH->CR, FLASH_CR_STRT);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the write protection of the desired pages
|
||||
* @note An option byte erase is done automatically in this function.
|
||||
* @note When the memory read protection level is selected (RDP level = 1),
|
||||
* it is not possible to program or erase the flash page i if
|
||||
* debug features are connected or boot code is executed in RAM, even if nWRPi = 1
|
||||
*
|
||||
* @param WriteProtectPage specifies the page(s) to be write protected.
|
||||
* The value of this parameter depend on device used within the same series
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WriteProtectPage)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
uint16_t WRP0_Data = 0xFFFFU;
|
||||
#if defined(OB_WRP1_WRP1)
|
||||
uint16_t WRP1_Data = 0xFFFFU;
|
||||
#endif /* OB_WRP1_WRP1 */
|
||||
#if defined(OB_WRP2_WRP2)
|
||||
uint16_t WRP2_Data = 0xFFFFU;
|
||||
#endif /* OB_WRP2_WRP2 */
|
||||
#if defined(OB_WRP3_WRP3)
|
||||
uint16_t WRP3_Data = 0xFFFFU;
|
||||
#endif /* OB_WRP3_WRP3 */
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_OB_WRP(WriteProtectPage));
|
||||
|
||||
/* Get current write protected pages and the new pages to be protected ******/
|
||||
WriteProtectPage = (uint32_t)(~((~FLASH_OB_GetWRP()) | WriteProtectPage));
|
||||
|
||||
#if defined(OB_WRP_PAGES0TO15MASK)
|
||||
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
|
||||
#elif defined(OB_WRP_PAGES0TO31MASK)
|
||||
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
|
||||
#endif /* OB_WRP_PAGES0TO31MASK */
|
||||
|
||||
#if defined(OB_WRP_PAGES16TO31MASK)
|
||||
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U);
|
||||
#elif defined(OB_WRP_PAGES32TO63MASK)
|
||||
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U);
|
||||
#endif /* OB_WRP_PAGES32TO63MASK */
|
||||
|
||||
#if defined(OB_WRP_PAGES32TO47MASK)
|
||||
WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U);
|
||||
#endif /* OB_WRP_PAGES32TO47MASK */
|
||||
|
||||
#if defined(OB_WRP_PAGES48TO63MASK)
|
||||
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24U);
|
||||
#elif defined(OB_WRP_PAGES48TO127MASK)
|
||||
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U);
|
||||
#endif /* OB_WRP_PAGES48TO63MASK */
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* To be able to write again option byte, need to perform a option byte erase */
|
||||
status = HAL_FLASHEx_OBErase();
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
/* Enable write protection */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
|
||||
#if defined(OB_WRP0_WRP0)
|
||||
if(WRP0_Data != 0xFFU)
|
||||
{
|
||||
OB->WRP0 &= WRP0_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP0_WRP0 */
|
||||
|
||||
#if defined(OB_WRP1_WRP1)
|
||||
if((status == HAL_OK) && (WRP1_Data != 0xFFU))
|
||||
{
|
||||
OB->WRP1 &= WRP1_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP1_WRP1 */
|
||||
|
||||
#if defined(OB_WRP2_WRP2)
|
||||
if((status == HAL_OK) && (WRP2_Data != 0xFFU))
|
||||
{
|
||||
OB->WRP2 &= WRP2_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP2_WRP2 */
|
||||
|
||||
#if defined(OB_WRP3_WRP3)
|
||||
if((status == HAL_OK) && (WRP3_Data != 0xFFU))
|
||||
{
|
||||
OB->WRP3 &= WRP3_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP3_WRP3 */
|
||||
|
||||
/* if the program operation is completed, disable the OPTPG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the write protection of the desired pages
|
||||
* @note An option byte erase is done automatically in this function.
|
||||
* @note When the memory read protection level is selected (RDP level = 1),
|
||||
* it is not possible to program or erase the flash page i if
|
||||
* debug features are connected or boot code is executed in RAM, even if nWRPi = 1
|
||||
*
|
||||
* @param WriteProtectPage specifies the page(s) to be write unprotected.
|
||||
* The value of this parameter depend on device used within the same series
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
uint16_t WRP0_Data = 0xFFFFU;
|
||||
#if defined(OB_WRP1_WRP1)
|
||||
uint16_t WRP1_Data = 0xFFFFU;
|
||||
#endif /* OB_WRP1_WRP1 */
|
||||
#if defined(OB_WRP2_WRP2)
|
||||
uint16_t WRP2_Data = 0xFFFFU;
|
||||
#endif /* OB_WRP2_WRP2 */
|
||||
#if defined(OB_WRP3_WRP3)
|
||||
uint16_t WRP3_Data = 0xFFFFU;
|
||||
#endif /* OB_WRP3_WRP3 */
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_OB_WRP(WriteProtectPage));
|
||||
|
||||
/* Get current write protected pages and the new pages to be unprotected ******/
|
||||
WriteProtectPage = (FLASH_OB_GetWRP() | WriteProtectPage);
|
||||
|
||||
#if defined(OB_WRP_PAGES0TO15MASK)
|
||||
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO15MASK);
|
||||
#elif defined(OB_WRP_PAGES0TO31MASK)
|
||||
WRP0_Data = (uint16_t)(WriteProtectPage & OB_WRP_PAGES0TO31MASK);
|
||||
#endif /* OB_WRP_PAGES0TO31MASK */
|
||||
|
||||
#if defined(OB_WRP_PAGES16TO31MASK)
|
||||
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES16TO31MASK) >> 8U);
|
||||
#elif defined(OB_WRP_PAGES32TO63MASK)
|
||||
WRP1_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO63MASK) >> 8U);
|
||||
#endif /* OB_WRP_PAGES32TO63MASK */
|
||||
|
||||
#if defined(OB_WRP_PAGES32TO47MASK)
|
||||
WRP2_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES32TO47MASK) >> 16U);
|
||||
#endif /* OB_WRP_PAGES32TO47MASK */
|
||||
|
||||
#if defined(OB_WRP_PAGES48TO63MASK)
|
||||
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO63MASK) >> 24U);
|
||||
#elif defined(OB_WRP_PAGES48TO127MASK)
|
||||
WRP3_Data = (uint16_t)((WriteProtectPage & OB_WRP_PAGES48TO127MASK) >> 24U);
|
||||
#endif /* OB_WRP_PAGES48TO63MASK */
|
||||
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* To be able to write again option byte, need to perform a option byte erase */
|
||||
status = HAL_FLASHEx_OBErase();
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
|
||||
#if defined(OB_WRP0_WRP0)
|
||||
if(WRP0_Data != 0xFFU)
|
||||
{
|
||||
OB->WRP0 &= WRP0_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP0_WRP0 */
|
||||
|
||||
#if defined(OB_WRP1_WRP1)
|
||||
if((status == HAL_OK) && (WRP1_Data != 0xFFU))
|
||||
{
|
||||
OB->WRP1 &= WRP1_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP1_WRP1 */
|
||||
|
||||
#if defined(OB_WRP2_WRP2)
|
||||
if((status == HAL_OK) && (WRP2_Data != 0xFFU))
|
||||
{
|
||||
OB->WRP2 &= WRP2_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP2_WRP2 */
|
||||
|
||||
#if defined(OB_WRP3_WRP3)
|
||||
if((status == HAL_OK) && (WRP3_Data != 0xFFU))
|
||||
{
|
||||
OB->WRP3 &= WRP3_Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
}
|
||||
#endif /* OB_WRP3_WRP3 */
|
||||
|
||||
/* if the program operation is completed, disable the OPTPG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the read protection level.
|
||||
* @param ReadProtectLevel specifies the read protection level.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref OB_RDP_LEVEL_0 No protection
|
||||
* @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
|
||||
* @arg @ref OB_RDP_LEVEL_2 Full chip protection
|
||||
* @note Warning: When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t ReadProtectLevel)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_OB_RDP_LEVEL(ReadProtectLevel));
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* If the previous operation is completed, proceed to erase the option bytes */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTER);
|
||||
SET_BIT(FLASH->CR, FLASH_CR_STRT);
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* If the erase operation is completed, disable the OPTER Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTER);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Enable the Option Bytes Programming operation */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
|
||||
WRITE_REG(OB->RDP, ReadProtectLevel);
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* if the program operation is completed, disable the OPTPG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Program the FLASH User Option Byte.
|
||||
* @note Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
|
||||
* @param UserConfig The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), nBOOT1(Bit4),
|
||||
* VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6).
|
||||
* For few devices, following option bytes are available: nBOOT0(Bit3) & BOOT_SEL(Bit7).
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t UserConfig)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_OB_IWDG_SOURCE((UserConfig&OB_IWDG_SW)));
|
||||
assert_param(IS_OB_STOP_SOURCE((UserConfig&OB_STOP_NO_RST)));
|
||||
assert_param(IS_OB_STDBY_SOURCE((UserConfig&OB_STDBY_NO_RST)));
|
||||
assert_param(IS_OB_BOOT1((UserConfig&OB_BOOT1_SET)));
|
||||
assert_param(IS_OB_VDDA_ANALOG((UserConfig&OB_VDDA_ANALOG_ON)));
|
||||
assert_param(IS_OB_SRAM_PARITY((UserConfig&OB_SRAM_PARITY_RESET)));
|
||||
#if defined(FLASH_OBR_BOOT_SEL)
|
||||
assert_param(IS_OB_BOOT_SEL((UserConfig&OB_BOOT_SEL_SET)));
|
||||
assert_param(IS_OB_BOOT0((UserConfig&OB_BOOT0_SET)));
|
||||
#endif /* FLASH_OBR_BOOT_SEL */
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* Enable the Option Bytes Programming operation */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
|
||||
#if defined(FLASH_OBR_BOOT_SEL)
|
||||
OB->USER = UserConfig;
|
||||
#else
|
||||
OB->USER = (UserConfig | 0x88U);
|
||||
#endif
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* if the program operation is completed, disable the OPTPG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Programs a half word at a specified Option Byte Data address.
|
||||
* @note The function @ref HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
|
||||
* The function @ref HAL_FLASH_OB_Unlock() should be called before to unlock the options bytes
|
||||
* The function @ref HAL_FLASH_OB_Launch() should be called after to force the reload of the options bytes
|
||||
* (system reset will occur)
|
||||
* Programming of the OB should be performed only after an erase (otherwise PGERR occurs)
|
||||
* @param Address specifies the address to be programmed.
|
||||
* This parameter can be 0x1FFFF804 or 0x1FFFF806.
|
||||
* @param Data specifies the data to be programmed.
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef FLASH_OB_ProgramData(uint32_t Address, uint8_t Data)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_ERROR;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_OB_DATA_ADDRESS(Address));
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
if(status == HAL_OK)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* Enables the Option Bytes Programming operation */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
*(__IO uint16_t*)Address = Data;
|
||||
|
||||
/* Wait for last operation to be completed */
|
||||
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
|
||||
|
||||
/* If the program operation is completed, disable the OPTPG Bit */
|
||||
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTPG);
|
||||
}
|
||||
/* Return the Option Byte Data Program Status */
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the FLASH Write Protection Option Bytes value.
|
||||
* @retval The FLASH Write Protection Option Bytes value
|
||||
*/
|
||||
static uint32_t FLASH_OB_GetWRP(void)
|
||||
{
|
||||
/* Return the FLASH write protection Register value */
|
||||
return (uint32_t)(READ_REG(FLASH->WRPR));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the FLASH Read Protection level.
|
||||
* @retval FLASH RDP level
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref OB_RDP_LEVEL_0 No protection
|
||||
* @arg @ref OB_RDP_LEVEL_1 Read protection of the memory
|
||||
* @arg @ref OB_RDP_LEVEL_2 Full chip protection
|
||||
*/
|
||||
static uint32_t FLASH_OB_GetRDP(void)
|
||||
{
|
||||
uint32_t tmp_reg;
|
||||
|
||||
/* Read RDP level bits */
|
||||
tmp_reg = READ_BIT(FLASH->OBR, (FLASH_OBR_RDPRT1 | FLASH_OBR_RDPRT2));
|
||||
|
||||
if (tmp_reg == 0U)
|
||||
{
|
||||
return OB_RDP_LEVEL_0;
|
||||
}
|
||||
else if ((tmp_reg & FLASH_OBR_RDPRT2) == FLASH_OBR_RDPRT2)
|
||||
{
|
||||
return OB_RDP_LEVEL_2;
|
||||
}
|
||||
else
|
||||
{
|
||||
return OB_RDP_LEVEL_1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the FLASH User Option Byte value.
|
||||
* @retval The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1), RST_STDBY(Bit2), nBOOT1(Bit4),
|
||||
* VDDA_Analog_Monitoring(Bit5) and SRAM_Parity_Enable(Bit6).
|
||||
* For few devices, following option bytes are available: nBOOT0(Bit3) & BOOT_SEL(Bit7).
|
||||
*/
|
||||
static uint8_t FLASH_OB_GetUser(void)
|
||||
{
|
||||
/* Return the User Option Byte */
|
||||
return (uint8_t)((READ_REG(FLASH->OBR) & FLASH_OBR_USER) >> FLASH_POSITION_IWDGSW_BIT);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup FLASH
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @addtogroup FLASH_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Erase the specified FLASH memory page
|
||||
* @param PageAddress FLASH page to erase
|
||||
* The value of this parameter depend on device used within the same series
|
||||
*
|
||||
* @retval None
|
||||
*/
|
||||
void FLASH_PageErase(uint32_t PageAddress)
|
||||
{
|
||||
/* Clean the error context */
|
||||
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
|
||||
|
||||
/* Proceed to erase the page */
|
||||
SET_BIT(FLASH->CR, FLASH_CR_PER);
|
||||
WRITE_REG(FLASH->AR, PageAddress);
|
||||
SET_BIT(FLASH->CR, FLASH_CR_STRT);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_FLASH_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
540
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c
Normal file
540
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_gpio.c
Normal file
@@ -0,0 +1,540 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_gpio.c
|
||||
* @author MCD Application Team
|
||||
* @brief GPIO HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the General Purpose Input/Output (GPIO) peripheral:
|
||||
* + Initialization and de-initialization functions
|
||||
* + IO operation functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### GPIO Peripheral features #####
|
||||
==============================================================================
|
||||
[..]
|
||||
(+) Each port bit of the general-purpose I/O (GPIO) ports can be individually
|
||||
configured by software in several modes:
|
||||
(++) Input mode
|
||||
(++) Analog mode
|
||||
(++) Output mode
|
||||
(++) Alternate function mode
|
||||
(++) External interrupt/event lines
|
||||
|
||||
(+) During and just after reset, the alternate functions and external interrupt
|
||||
lines are not active and the I/O ports are configured in input floating mode.
|
||||
|
||||
(+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be
|
||||
activated or not.
|
||||
|
||||
(+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull
|
||||
type and the IO speed can be selected depending on the VDD value.
|
||||
|
||||
(+) The microcontroller IO pins are connected to onboard peripherals/modules through a
|
||||
multiplexer that allows only one peripheral alternate function (AF) connected
|
||||
to an IO pin at a time. In this way, there can be no conflict between peripherals
|
||||
sharing the same IO pin.
|
||||
|
||||
(+) All ports have external interrupt/event capability. To use external interrupt
|
||||
lines, the port must be configured in input mode. All available GPIO pins are
|
||||
connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
|
||||
|
||||
(+) The external interrupt/event controller consists of up to 28 edge detectors
|
||||
(16 lines are connected to GPIO) for generating event/interrupt requests (each
|
||||
input line can be independently configured to select the type (interrupt or event)
|
||||
and the corresponding trigger event (rising or falling or both). Each line can
|
||||
also be masked independently.
|
||||
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..]
|
||||
(#) Enable the GPIO AHB clock using the following function : __HAL_RCC_GPIOx_CLK_ENABLE().
|
||||
|
||||
(#) Configure the GPIO pin(s) using HAL_GPIO_Init().
|
||||
(++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
|
||||
(++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
|
||||
structure.
|
||||
(++) In case of Output or alternate function mode selection: the speed is
|
||||
configured through "Speed" member from GPIO_InitTypeDef structure.
|
||||
(++) In alternate mode is selection, the alternate function connected to the IO
|
||||
is configured through "Alternate" member from GPIO_InitTypeDef structure.
|
||||
(++) Analog mode is required when a pin is to be used as ADC channel
|
||||
or DAC output.
|
||||
(++) In case of external interrupt/event selection the "Mode" member from
|
||||
GPIO_InitTypeDef structure select the type (interrupt or event) and
|
||||
the corresponding trigger event (rising or falling or both).
|
||||
|
||||
(#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
|
||||
mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
|
||||
HAL_NVIC_EnableIRQ().
|
||||
|
||||
(#) HAL_GPIO_DeInit allows to set register values to their reset value. It's also
|
||||
recommended to use it to unconfigure pin which was used as an external interrupt
|
||||
or in event mode. That's the only way to reset corresponding bit in EXTI & SYSCFG
|
||||
registers.
|
||||
|
||||
(#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
|
||||
|
||||
(#) To set/reset the level of a pin configured in output mode use
|
||||
HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
|
||||
|
||||
(#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
|
||||
|
||||
(#) During and just after reset, the alternate functions are not
|
||||
active and the GPIO pins are configured in input floating mode (except JTAG
|
||||
pins).
|
||||
|
||||
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
|
||||
(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
|
||||
priority over the GPIO function.
|
||||
|
||||
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
|
||||
general purpose PF0 and PF1, respectively, when the HSE oscillator is off.
|
||||
The HSE has priority over the GPIO function.
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO GPIO
|
||||
* @brief GPIO HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** MISRA C:2012 deviation rule has been granted for following rules:
|
||||
* Rule-18.1_d - Medium: Array pointer `GPIOx' is accessed with index [..,..]
|
||||
* which may be out of array bounds [..,UNKNOWN] in following APIs:
|
||||
* HAL_GPIO_Init
|
||||
* HAL_GPIO_DeInit
|
||||
*/
|
||||
|
||||
#ifdef HAL_GPIO_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private defines -----------------------------------------------------------*/
|
||||
/** @addtogroup GPIO_Private_Constants GPIO Private Constants
|
||||
* @{
|
||||
*/
|
||||
#define GPIO_NUMBER 16U
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @defgroup GPIO_Exported_Functions GPIO Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO_Exported_Functions_Group1 Initialization/de-initialization functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and de-initialization functions #####
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init.
|
||||
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
|
||||
* @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains
|
||||
* the configuration information for the specified GPIO peripheral.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
|
||||
{
|
||||
uint32_t position = 0x00u;
|
||||
uint32_t iocurrent;
|
||||
uint32_t temp;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
|
||||
assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
|
||||
|
||||
/* Configure the port pins */
|
||||
while (((GPIO_Init->Pin) >> position) != 0x00u)
|
||||
{
|
||||
/* Get current io position */
|
||||
iocurrent = (GPIO_Init->Pin) & (1uL << position);
|
||||
|
||||
if (iocurrent != 0x00u)
|
||||
{
|
||||
/*--------------------- GPIO Mode Configuration ------------------------*/
|
||||
/* In case of Output or Alternate function mode selection */
|
||||
if(((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) ||
|
||||
((GPIO_Init->Mode & GPIO_MODE) == MODE_AF))
|
||||
{
|
||||
/* Check the Speed parameter */
|
||||
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
|
||||
/* Configure the IO Speed */
|
||||
temp = GPIOx->OSPEEDR;
|
||||
temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2u));
|
||||
temp |= (GPIO_Init->Speed << (position * 2u));
|
||||
GPIOx->OSPEEDR = temp;
|
||||
|
||||
/* Configure the IO Output Type */
|
||||
temp = GPIOx->OTYPER;
|
||||
temp &= ~(GPIO_OTYPER_OT_0 << position) ;
|
||||
temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_Pos) << position);
|
||||
GPIOx->OTYPER = temp;
|
||||
}
|
||||
|
||||
if((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG)
|
||||
{
|
||||
/* Check the Pull parameter */
|
||||
assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
|
||||
|
||||
/* Activate the Pull-up or Pull down resistor for the current IO */
|
||||
temp = GPIOx->PUPDR;
|
||||
temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2u));
|
||||
temp |= ((GPIO_Init->Pull) << (position * 2u));
|
||||
GPIOx->PUPDR = temp;
|
||||
}
|
||||
|
||||
/* In case of Alternate function mode selection */
|
||||
if((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)
|
||||
{
|
||||
/* Check the Alternate function parameters */
|
||||
assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
|
||||
assert_param(IS_GPIO_AF(GPIO_Init->Alternate));
|
||||
|
||||
/* Configure Alternate function mapped with the current IO */
|
||||
temp = GPIOx->AFR[position >> 3u];
|
||||
temp &= ~(0xFu << ((position & 0x07u) * 4u));
|
||||
temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * 4u));
|
||||
GPIOx->AFR[position >> 3u] = temp;
|
||||
}
|
||||
|
||||
/* Configure IO Direction mode (Input, Output, Alternate or Analog) */
|
||||
temp = GPIOx->MODER;
|
||||
temp &= ~(GPIO_MODER_MODER0 << (position * 2u));
|
||||
temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2u));
|
||||
GPIOx->MODER = temp;
|
||||
|
||||
/*--------------------- EXTI Mode Configuration ------------------------*/
|
||||
/* Configure the External Interrupt or event for the current IO */
|
||||
if((GPIO_Init->Mode & EXTI_MODE) != 0x00u)
|
||||
{
|
||||
/* Enable SYSCFG Clock */
|
||||
__HAL_RCC_SYSCFG_CLK_ENABLE();
|
||||
|
||||
temp = SYSCFG->EXTICR[position >> 2u];
|
||||
temp &= ~(0x0FuL << (4u * (position & 0x03u)));
|
||||
temp |= (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u)));
|
||||
SYSCFG->EXTICR[position >> 2u] = temp;
|
||||
|
||||
/* Clear EXTI line configuration */
|
||||
temp = EXTI->IMR;
|
||||
temp &= ~(iocurrent);
|
||||
if((GPIO_Init->Mode & EXTI_IT) != 0x00u)
|
||||
{
|
||||
temp |= iocurrent;
|
||||
}
|
||||
EXTI->IMR = temp;
|
||||
|
||||
temp = EXTI->EMR;
|
||||
temp &= ~(iocurrent);
|
||||
if((GPIO_Init->Mode & EXTI_EVT) != 0x00u)
|
||||
{
|
||||
temp |= iocurrent;
|
||||
}
|
||||
EXTI->EMR = temp;
|
||||
|
||||
/* Clear Rising Falling edge configuration */
|
||||
temp = EXTI->RTSR;
|
||||
temp &= ~(iocurrent);
|
||||
if((GPIO_Init->Mode & TRIGGER_RISING) != 0x00u)
|
||||
{
|
||||
temp |= iocurrent;
|
||||
}
|
||||
EXTI->RTSR = temp;
|
||||
|
||||
temp = EXTI->FTSR;
|
||||
temp &= ~(iocurrent);
|
||||
if((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00u)
|
||||
{
|
||||
temp |= iocurrent;
|
||||
}
|
||||
EXTI->FTSR = temp;
|
||||
}
|
||||
}
|
||||
|
||||
position++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief De-initialize the GPIOx peripheral registers to their default reset values.
|
||||
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
|
||||
* @param GPIO_Pin specifies the port bit to be written.
|
||||
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
|
||||
{
|
||||
uint32_t position = 0x00u;
|
||||
uint32_t iocurrent;
|
||||
uint32_t tmp;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
/* Configure the port pins */
|
||||
while ((GPIO_Pin >> position) != 0x00u)
|
||||
{
|
||||
/* Get current io position */
|
||||
iocurrent = (GPIO_Pin) & (1uL << position);
|
||||
|
||||
if (iocurrent != 0x00u)
|
||||
{
|
||||
/*------------------------- EXTI Mode Configuration --------------------*/
|
||||
/* Clear the External Interrupt or Event for the current IO */
|
||||
|
||||
tmp = SYSCFG->EXTICR[position >> 2u];
|
||||
tmp &= (0x0FuL << (4u * (position & 0x03u)));
|
||||
if (tmp == (GPIO_GET_INDEX(GPIOx) << (4u * (position & 0x03u))))
|
||||
{
|
||||
/* Clear EXTI line configuration */
|
||||
EXTI->IMR &= ~((uint32_t)iocurrent);
|
||||
EXTI->EMR &= ~((uint32_t)iocurrent);
|
||||
|
||||
/* Clear Rising Falling edge configuration */
|
||||
EXTI->RTSR &= ~((uint32_t)iocurrent);
|
||||
EXTI->FTSR &= ~((uint32_t)iocurrent);
|
||||
|
||||
/* Configure the External Interrupt or event for the current IO */
|
||||
tmp = 0x0FuL << (4u * (position & 0x03u));
|
||||
SYSCFG->EXTICR[position >> 2u] &= ~tmp;
|
||||
}
|
||||
|
||||
/*------------------------- GPIO Mode Configuration --------------------*/
|
||||
/* Configure IO Direction in Input Floating Mode */
|
||||
GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2u));
|
||||
|
||||
/* Configure the default Alternate Function in current IO */
|
||||
GPIOx->AFR[position >> 3u] &= ~(0xFu << ((uint32_t)(position & 0x07u) * 4u)) ;
|
||||
|
||||
/* Deactivate the Pull-up and Pull-down resistor for the current IO */
|
||||
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2u));
|
||||
|
||||
/* Configure the default value IO Output Type */
|
||||
GPIOx->OTYPER &= ~(GPIO_OTYPER_OT_0 << position) ;
|
||||
|
||||
/* Configure the default value for IO Speed */
|
||||
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2u));
|
||||
|
||||
}
|
||||
|
||||
position++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions
|
||||
* @brief GPIO Read, Write, Toggle, Lock and EXTI management functions.
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Read the specified input port pin.
|
||||
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
|
||||
* @param GPIO_Pin specifies the port bit to read.
|
||||
* This parameter can be GPIO_PIN_x where x can be (0..15).
|
||||
* @retval The input port pin value.
|
||||
*/
|
||||
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
GPIO_PinState bitstatus;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET)
|
||||
{
|
||||
bitstatus = GPIO_PIN_SET;
|
||||
}
|
||||
else
|
||||
{
|
||||
bitstatus = GPIO_PIN_RESET;
|
||||
}
|
||||
return bitstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set or clear the selected data port bit.
|
||||
* @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify
|
||||
* accesses. In this way, there is no risk of an IRQ occurring between
|
||||
* the read and the modify access.
|
||||
*
|
||||
* @param GPIOx where x can be (A..H) to select the GPIO peripheral for STM32F0 family
|
||||
* @param GPIO_Pin specifies the port bit to be written.
|
||||
* This parameter can be one of GPIO_PIN_x where x can be (0..15).
|
||||
* @param PinState specifies the value to be written to the selected bit.
|
||||
* This parameter can be one of the GPIO_PinState enum values:
|
||||
* @arg GPIO_PIN_RESET: to clear the port pin
|
||||
* @arg GPIO_PIN_SET: to set the port pin
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
assert_param(IS_GPIO_PIN_ACTION(PinState));
|
||||
|
||||
if (PinState != GPIO_PIN_RESET)
|
||||
{
|
||||
GPIOx->BSRR = (uint32_t)GPIO_Pin;
|
||||
}
|
||||
else
|
||||
{
|
||||
GPIOx->BRR = (uint32_t)GPIO_Pin;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Toggle the specified GPIO pin.
|
||||
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
|
||||
* @param GPIO_Pin specifies the pin to be toggled.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
uint32_t odr;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
/* get current Ouput Data Register value */
|
||||
odr = GPIOx->ODR;
|
||||
|
||||
/* Set selected pins that were at low level, and reset ones that were high */
|
||||
GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Locks GPIO Pins configuration registers.
|
||||
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
|
||||
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
|
||||
* @note The configuration of the locked GPIO pins can no longer be modified
|
||||
* until the next reset.
|
||||
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F0 family
|
||||
* @param GPIO_Pin specifies the port bits to be locked.
|
||||
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
|
||||
* @retval None
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
|
||||
{
|
||||
__IO uint32_t tmp = GPIO_LCKR_LCKK;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
|
||||
assert_param(IS_GPIO_PIN(GPIO_Pin));
|
||||
|
||||
/* Apply lock key write sequence */
|
||||
SET_BIT(tmp, GPIO_Pin);
|
||||
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
|
||||
GPIOx->LCKR = tmp;
|
||||
/* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
|
||||
GPIOx->LCKR = GPIO_Pin;
|
||||
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
|
||||
GPIOx->LCKR = tmp;
|
||||
/* Read LCKK register. This read is mandatory to complete key lock sequence */
|
||||
tmp = GPIOx->LCKR;
|
||||
|
||||
/* read again in order to confirm lock is active */
|
||||
if((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u)
|
||||
{
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle EXTI interrupt request.
|
||||
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
|
||||
{
|
||||
/* EXTI line interrupt detected */
|
||||
if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != 0x00u)
|
||||
{
|
||||
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin);
|
||||
HAL_GPIO_EXTI_Callback(GPIO_Pin);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief EXTI line detection callback.
|
||||
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(GPIO_Pin);
|
||||
|
||||
/* NOTE: This function should not be modified, when the callback is needed,
|
||||
the HAL_GPIO_EXTI_Callback could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_GPIO_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
6794
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c
Normal file
6794
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c.c
Normal file
File diff suppressed because it is too large
Load Diff
365
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c
Normal file
365
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_i2c_ex.c
Normal file
@@ -0,0 +1,365 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_i2c_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief I2C Extended HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of I2C Extended peripheral:
|
||||
* + Filter Mode Functions
|
||||
* + WakeUp Mode Functions
|
||||
* + FastModePlus Functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### I2C peripheral Extended features #####
|
||||
==============================================================================
|
||||
|
||||
[..] Comparing to other previous devices, the I2C interface for STM32F0xx
|
||||
devices contains the following additional features
|
||||
|
||||
(+) Possibility to disable or enable Analog Noise Filter
|
||||
(+) Use of a configured Digital Noise Filter
|
||||
(+) Disable or enable wakeup from Stop mode(s)
|
||||
(+) Disable or enable Fast Mode Plus
|
||||
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..] This driver provides functions to configure Noise Filter and Wake Up Feature
|
||||
(#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter()
|
||||
(#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter()
|
||||
(#) Configure the enable or disable of I2C Wake Up Mode using the functions :
|
||||
(++) HAL_I2CEx_EnableWakeUp()
|
||||
(++) HAL_I2CEx_DisableWakeUp()
|
||||
(#) Configure the enable or disable of fast mode plus driving capability using the functions :
|
||||
(++) HAL_I2CEx_EnableFastModePlus()
|
||||
(++) HAL_I2CEx_DisableFastModePlus()
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup I2CEx I2CEx
|
||||
* @brief I2C Extended HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_I2C_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup I2CEx_Exported_Functions_Group1 Filter Mode Functions
|
||||
* @brief Filter Mode Functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Filter Mode Functions #####
|
||||
===============================================================================
|
||||
[..] This section provides functions allowing to:
|
||||
(+) Configure Noise Filters
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Configure I2C Analog noise filter.
|
||||
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified I2Cx peripheral.
|
||||
* @param AnalogFilter New state of the Analog filter.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
|
||||
assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter));
|
||||
|
||||
if (hi2c->State == HAL_I2C_STATE_READY)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_BUSY;
|
||||
|
||||
/* Disable the selected I2C peripheral */
|
||||
__HAL_I2C_DISABLE(hi2c);
|
||||
|
||||
/* Reset I2Cx ANOFF bit */
|
||||
hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF);
|
||||
|
||||
/* Set analog filter bit*/
|
||||
hi2c->Instance->CR1 |= AnalogFilter;
|
||||
|
||||
__HAL_I2C_ENABLE(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hi2c);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configure I2C Digital noise filter.
|
||||
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified I2Cx peripheral.
|
||||
* @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter)
|
||||
{
|
||||
uint32_t tmpreg;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
|
||||
assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter));
|
||||
|
||||
if (hi2c->State == HAL_I2C_STATE_READY)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_BUSY;
|
||||
|
||||
/* Disable the selected I2C peripheral */
|
||||
__HAL_I2C_DISABLE(hi2c);
|
||||
|
||||
/* Get the old register value */
|
||||
tmpreg = hi2c->Instance->CR1;
|
||||
|
||||
/* Reset I2Cx DNF bits [11:8] */
|
||||
tmpreg &= ~(I2C_CR1_DNF);
|
||||
|
||||
/* Set I2Cx DNF coefficient */
|
||||
tmpreg |= DigitalFilter << 8U;
|
||||
|
||||
/* Store the new register value */
|
||||
hi2c->Instance->CR1 = tmpreg;
|
||||
|
||||
__HAL_I2C_ENABLE(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hi2c);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
#if defined(I2C_CR1_WUPEN)
|
||||
|
||||
/** @defgroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions
|
||||
* @brief WakeUp Mode Functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### WakeUp Mode Functions #####
|
||||
===============================================================================
|
||||
[..] This section provides functions allowing to:
|
||||
(+) Configure Wake Up Feature
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enable I2C wakeup from Stop mode(s).
|
||||
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified I2Cx peripheral.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
|
||||
|
||||
if (hi2c->State == HAL_I2C_STATE_READY)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_BUSY;
|
||||
|
||||
/* Disable the selected I2C peripheral */
|
||||
__HAL_I2C_DISABLE(hi2c);
|
||||
|
||||
/* Enable wakeup from stop mode */
|
||||
hi2c->Instance->CR1 |= I2C_CR1_WUPEN;
|
||||
|
||||
__HAL_I2C_ENABLE(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hi2c);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable I2C wakeup from Stop mode(s).
|
||||
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified I2Cx peripheral.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
|
||||
|
||||
if (hi2c->State == HAL_I2C_STATE_READY)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_BUSY;
|
||||
|
||||
/* Disable the selected I2C peripheral */
|
||||
__HAL_I2C_DISABLE(hi2c);
|
||||
|
||||
/* Enable wakeup from stop mode */
|
||||
hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN);
|
||||
|
||||
__HAL_I2C_ENABLE(hi2c);
|
||||
|
||||
hi2c->State = HAL_I2C_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hi2c);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
#endif /* I2C_CR1_WUPEN */
|
||||
|
||||
/** @defgroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions
|
||||
* @brief Fast Mode Plus Functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Fast Mode Plus Functions #####
|
||||
===============================================================================
|
||||
[..] This section provides functions allowing to:
|
||||
(+) Configure Fast Mode Plus
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enable the I2C fast mode plus driving capability.
|
||||
* @param ConfigFastModePlus Selects the pin.
|
||||
* This parameter can be one of the @ref I2CEx_FastModePlus values
|
||||
* @note For I2C1, fast mode plus driving capability can be enabled on all selected
|
||||
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
|
||||
* on each one of the following pins PB6, PB7, PB8 and PB9.
|
||||
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
|
||||
* can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
|
||||
* @note For all I2C2 pins fast mode plus driving capability can be enabled
|
||||
* only by using I2C_FASTMODEPLUS_I2C2 parameter.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus)
|
||||
{
|
||||
/* Check the parameter */
|
||||
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
|
||||
|
||||
/* Enable SYSCFG clock */
|
||||
__HAL_RCC_SYSCFG_CLK_ENABLE();
|
||||
|
||||
/* Enable fast mode plus driving capability for selected pin */
|
||||
SET_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the I2C fast mode plus driving capability.
|
||||
* @param ConfigFastModePlus Selects the pin.
|
||||
* This parameter can be one of the @ref I2CEx_FastModePlus values
|
||||
* @note For I2C1, fast mode plus driving capability can be disabled on all selected
|
||||
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
|
||||
* on each one of the following pins PB6, PB7, PB8 and PB9.
|
||||
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
|
||||
* can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
|
||||
* @note For all I2C2 pins fast mode plus driving capability can be disabled
|
||||
* only by using I2C_FASTMODEPLUS_I2C2 parameter.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus)
|
||||
{
|
||||
/* Check the parameter */
|
||||
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
|
||||
|
||||
/* Enable SYSCFG clock */
|
||||
__HAL_RCC_SYSCFG_CLK_ENABLE();
|
||||
|
||||
/* Disable fast mode plus driving capability for selected pin */
|
||||
CLEAR_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_I2C_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
454
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c
Normal file
454
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr.c
Normal file
@@ -0,0 +1,454 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_pwr.c
|
||||
* @author MCD Application Team
|
||||
* @brief PWR HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the Power Controller (PWR) peripheral:
|
||||
* + Initialization/de-initialization function
|
||||
* + Peripheral Control function
|
||||
*
|
||||
@verbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup PWR PWR
|
||||
* @brief PWR HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_PWR_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup PWR_Exported_Functions PWR Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Initialization and de-initialization functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and de-initialization functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
After reset, the backup domain (RTC registers, RTC backup data
|
||||
registers) is protected against possible unwanted
|
||||
write accesses.
|
||||
To enable access to the RTC Domain and RTC registers, proceed as follows:
|
||||
(+) Enable the Power Controller (PWR) APB1 interface clock using the
|
||||
__HAL_RCC_PWR_CLK_ENABLE() macro.
|
||||
(+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Deinitializes the PWR peripheral registers to their default reset values.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_DeInit(void)
|
||||
{
|
||||
__HAL_RCC_PWR_FORCE_RESET();
|
||||
__HAL_RCC_PWR_RELEASE_RESET();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables access to the backup domain (RTC registers, RTC
|
||||
* backup data registers when present).
|
||||
* @note If the HSE divided by 32 is used as the RTC clock, the
|
||||
* Backup Domain Access should be kept enabled.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnableBkUpAccess(void)
|
||||
{
|
||||
PWR->CR |= (uint32_t)PWR_CR_DBP;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disables access to the backup domain (RTC registers, RTC
|
||||
* backup data registers when present).
|
||||
* @note If the HSE divided by 32 is used as the RTC clock, the
|
||||
* Backup Domain Access should be kept enabled.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_DisableBkUpAccess(void)
|
||||
{
|
||||
PWR->CR &= ~((uint32_t)PWR_CR_DBP);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
|
||||
* @brief Low Power modes configuration functions
|
||||
*
|
||||
@verbatim
|
||||
|
||||
===============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
===============================================================================
|
||||
|
||||
*** WakeUp pin configuration ***
|
||||
================================
|
||||
[..]
|
||||
(+) WakeUp pin is used to wakeup the system from Standby mode. This pin is
|
||||
forced in input pull down configuration and is active on rising edges.
|
||||
(+) There are two WakeUp pins, and up to eight Wakeup pins on STM32F07x & STM32F09x devices.
|
||||
(++)WakeUp Pin 1 on PA.00.
|
||||
(++)WakeUp Pin 2 on PC.13.
|
||||
(++)WakeUp Pin 3 on PE.06.(STM32F07x/STM32F09x)
|
||||
(++)WakeUp Pin 4 on PA.02.(STM32F07x/STM32F09x)
|
||||
(++)WakeUp Pin 5 on PC.05.(STM32F07x/STM32F09x)
|
||||
(++)WakeUp Pin 6 on PB.05.(STM32F07x/STM32F09x)
|
||||
(++)WakeUp Pin 7 on PB.15.(STM32F07x/STM32F09x)
|
||||
(++)WakeUp Pin 8 on PF.02.(STM32F07x/STM32F09x)
|
||||
|
||||
*** Low Power modes configuration ***
|
||||
=====================================
|
||||
[..]
|
||||
The devices feature 3 low-power modes:
|
||||
(+) Sleep mode: Cortex-M0 core stopped, peripherals kept running.
|
||||
(+) Stop mode: all clocks are stopped, regulator running, regulator
|
||||
in low power mode
|
||||
(+) Standby mode: 1.2V domain powered off (mode not available on STM32F0x8 devices).
|
||||
|
||||
*** Sleep mode ***
|
||||
==================
|
||||
[..]
|
||||
(+) Entry:
|
||||
The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
|
||||
functions with
|
||||
(++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
|
||||
(++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
|
||||
|
||||
(+) Exit:
|
||||
(++) Any peripheral interrupt acknowledged by the nested vectored interrupt
|
||||
controller (NVIC) can wake up the device from Sleep mode.
|
||||
|
||||
*** Stop mode ***
|
||||
=================
|
||||
[..]
|
||||
In Stop mode, all clocks in the 1.8V domain are stopped, the PLL, the HSI,
|
||||
and the HSE RC oscillators are disabled. Internal SRAM and register contents
|
||||
are preserved.
|
||||
The voltage regulator can be configured either in normal or low-power mode.
|
||||
To minimize the consumption.
|
||||
|
||||
(+) Entry:
|
||||
The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI )
|
||||
function with:
|
||||
(++) Main regulator ON.
|
||||
(++) Low Power regulator ON.
|
||||
(++) PWR_STOPENTRY_WFI: enter STOP mode with WFI instruction
|
||||
(++) PWR_STOPENTRY_WFE: enter STOP mode with WFE instruction
|
||||
(+) Exit:
|
||||
(++) Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
|
||||
(++) Some specific communication peripherals (CEC, USART, I2C) interrupts,
|
||||
when programmed in wakeup mode (the peripheral must be
|
||||
programmed in wakeup mode and the corresponding interrupt vector
|
||||
must be enabled in the NVIC)
|
||||
|
||||
*** Standby mode ***
|
||||
====================
|
||||
[..]
|
||||
The Standby mode allows to achieve the lowest power consumption. It is based
|
||||
on the Cortex-M0 deep sleep mode, with the voltage regulator disabled.
|
||||
The 1.8V domain is consequently powered off. The PLL, the HSI oscillator and
|
||||
the HSE oscillator are also switched off. SRAM and register contents are lost
|
||||
except for the RTC registers, RTC backup registers and Standby circuitry.
|
||||
The voltage regulator is OFF.
|
||||
|
||||
(+) Entry:
|
||||
(++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
|
||||
(+) Exit:
|
||||
(++) WKUP pin rising edge, RTC alarm (Alarm A), RTC wakeup,
|
||||
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
|
||||
|
||||
*** Auto-wakeup (AWU) from low-power mode ***
|
||||
=============================================
|
||||
[..]
|
||||
The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
|
||||
Wakeup event, a tamper event, a time-stamp event, or a comparator event,
|
||||
without depending on an external interrupt (Auto-wakeup mode).
|
||||
|
||||
(+) RTC auto-wakeup (AWU) from the Stop and Standby modes
|
||||
|
||||
(++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
|
||||
configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
|
||||
|
||||
(++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
|
||||
is necessary to configure the RTC to detect the tamper or time stamp event using the
|
||||
HAL_RTC_SetTimeStamp_IT() or HAL_RTC_SetTamper_IT() functions.
|
||||
|
||||
(++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to
|
||||
configure the RTC to generate the RTC WakeUp event using the HAL_RTC_SetWakeUpTimer_IT() function.
|
||||
|
||||
(+) Comparator auto-wakeup (AWU) from the Stop mode
|
||||
|
||||
(++) To wake up from the Stop mode with a comparator wakeup event, it is necessary to:
|
||||
(+++) Configure the EXTI Line associated with the comparator (example EXTI Line 22 for comparator 2)
|
||||
to be sensitive to to the selected edges (falling, rising or falling
|
||||
and rising) (Interrupt or Event modes) using the EXTI_Init() function.
|
||||
(+++) Configure the comparator to generate the event.
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Enables the WakeUp PINx functionality.
|
||||
* @param WakeUpPinx Specifies the Power Wake-Up pin to enable.
|
||||
* This parameter can be value of :
|
||||
* @ref PWREx_WakeUp_Pins
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
|
||||
/* Enable the EWUPx pin */
|
||||
SET_BIT(PWR->CSR, WakeUpPinx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disables the WakeUp PINx functionality.
|
||||
* @param WakeUpPinx Specifies the Power Wake-Up pin to disable.
|
||||
* This parameter can be values of :
|
||||
* @ref PWREx_WakeUp_Pins
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
|
||||
/* Disable the EWUPx pin */
|
||||
CLEAR_BIT(PWR->CSR, WakeUpPinx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enters Sleep mode.
|
||||
* @note In Sleep mode, all I/O pins keep the same state as in Run mode.
|
||||
* @param Regulator Specifies the regulator state in SLEEP mode.
|
||||
* On STM32F0 devices, this parameter is a dummy value and it is ignored
|
||||
* as regulator can't be modified in this mode. Parameter is kept for platform
|
||||
* compatibility.
|
||||
* @param SLEEPEntry Specifies if SLEEP mode is entered with WFI or WFE instruction.
|
||||
* When WFI entry is used, tick interrupt have to be disabled if not desired as
|
||||
* the interrupt wake up source.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
|
||||
* @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_REGULATOR(Regulator));
|
||||
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
|
||||
|
||||
/* Clear SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
|
||||
|
||||
/* Select SLEEP mode entry -------------------------------------------------*/
|
||||
if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
|
||||
{
|
||||
/* Request Wait For Interrupt */
|
||||
__WFI();
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Request Wait For Event */
|
||||
__SEV();
|
||||
__WFE();
|
||||
__WFE();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enters STOP mode.
|
||||
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
|
||||
* @note When exiting Stop mode by issuing an interrupt or a wakeup event,
|
||||
* the HSI RC oscillator is selected as system clock.
|
||||
* @note When the voltage regulator operates in low power mode, an additional
|
||||
* startup delay is incurred when waking up from Stop mode.
|
||||
* By keeping the internal regulator ON during Stop mode, the consumption
|
||||
* is higher although the startup time is reduced.
|
||||
* @param Regulator Specifies the regulator state in STOP mode.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_MAINREGULATOR_ON: STOP mode with regulator ON
|
||||
* @arg PWR_LOWPOWERREGULATOR_ON: STOP mode with low power regulator ON
|
||||
* @param STOPEntry specifies if STOP mode in entered with WFI or WFE instruction.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg PWR_STOPENTRY_WFI:Enter STOP mode with WFI instruction
|
||||
* @arg PWR_STOPENTRY_WFE: Enter STOP mode with WFE instruction
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
|
||||
{
|
||||
uint32_t tmpreg = 0;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_REGULATOR(Regulator));
|
||||
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
|
||||
|
||||
/* Select the regulator state in STOP mode ---------------------------------*/
|
||||
tmpreg = PWR->CR;
|
||||
|
||||
/* Clear PDDS and LPDS bits */
|
||||
tmpreg &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS);
|
||||
|
||||
/* Set LPDS bit according to Regulator value */
|
||||
tmpreg |= Regulator;
|
||||
|
||||
/* Store the new value */
|
||||
PWR->CR = tmpreg;
|
||||
|
||||
/* Set SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
|
||||
|
||||
/* Select STOP mode entry --------------------------------------------------*/
|
||||
if(STOPEntry == PWR_STOPENTRY_WFI)
|
||||
{
|
||||
/* Request Wait For Interrupt */
|
||||
__WFI();
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Request Wait For Event */
|
||||
__SEV();
|
||||
__WFE();
|
||||
__WFE();
|
||||
}
|
||||
|
||||
/* Reset SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enters STANDBY mode.
|
||||
* @note In Standby mode, all I/O pins are high impedance except for:
|
||||
* - Reset pad (still available)
|
||||
* - RTC alternate function pins if configured for tamper, time-stamp, RTC
|
||||
* Alarm out, or RTC clock calibration out.
|
||||
* - WKUP pins if enabled.
|
||||
* STM32F0x8 devices, the Stop mode is available, but it is
|
||||
* aningless to distinguish between voltage regulator in Low power
|
||||
* mode and voltage regulator in Run mode because the regulator
|
||||
* not used and the core is supplied directly from an external source.
|
||||
* Consequently, the Standby mode is not available on those devices.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnterSTANDBYMode(void)
|
||||
{
|
||||
/* Select STANDBY mode */
|
||||
PWR->CR |= (uint32_t)PWR_CR_PDDS;
|
||||
|
||||
/* Set SLEEPDEEP bit of Cortex System Control Register */
|
||||
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
|
||||
|
||||
/* This option is used to ensure that store operations are completed */
|
||||
#if defined ( __CC_ARM)
|
||||
__force_stores();
|
||||
#endif
|
||||
/* Request Wait For Interrupt */
|
||||
__WFI();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
|
||||
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
|
||||
* re-enters SLEEP mode when an interruption handling is over.
|
||||
* Setting this bit is useful when the processor is expected to run only on
|
||||
* interruptions handling.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnableSleepOnExit(void)
|
||||
{
|
||||
/* Set SLEEPONEXIT bit of Cortex System Control Register */
|
||||
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
|
||||
* @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
|
||||
* re-enters SLEEP mode when an interruption handling is over.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_DisableSleepOnExit(void)
|
||||
{
|
||||
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
|
||||
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Enables CORTEX M4 SEVONPEND bit.
|
||||
* @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
|
||||
* WFE to wake up when an interrupt moves from inactive to pended.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnableSEVOnPend(void)
|
||||
{
|
||||
/* Set SEVONPEND bit of Cortex System Control Register */
|
||||
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Disables CORTEX M4 SEVONPEND bit.
|
||||
* @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
|
||||
* WFE to wake up when an interrupt moves from inactive to pended.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_DisableSEVOnPend(void)
|
||||
{
|
||||
/* Clear SEVONPEND bit of Cortex System Control Register */
|
||||
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_PWR_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
274
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c
Normal file
274
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_pwr_ex.c
Normal file
@@ -0,0 +1,274 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_pwr_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended PWR HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the Power Controller (PWR) peripheral:
|
||||
* + Extended Initialization and de-initialization functions
|
||||
* + Extended Peripheral Control functions
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup PWREx PWREx
|
||||
* @brief PWREx HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_PWR_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/** @defgroup PWREx_Private_Constants PWREx Private Constants
|
||||
* @{
|
||||
*/
|
||||
#define PVD_MODE_IT (0x00010000U)
|
||||
#define PVD_MODE_EVT (0x00020000U)
|
||||
#define PVD_RISING_EDGE (0x00000001U)
|
||||
#define PVD_FALLING_EDGE (0x00000002U)
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Exported functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup PWREx_Exported_Functions PWREx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended Control Functions
|
||||
* @brief Extended Peripheral Control functions
|
||||
*
|
||||
@verbatim
|
||||
|
||||
===============================================================================
|
||||
##### Peripheral extended control functions #####
|
||||
===============================================================================
|
||||
|
||||
*** PVD configuration ***
|
||||
=========================
|
||||
[..]
|
||||
(+) The PVD is used to monitor the VDD power supply by comparing it to a
|
||||
threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
|
||||
(+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
|
||||
than the PVD threshold. This event is internally connected to the EXTI
|
||||
line16 and can generate an interrupt if enabled. This is done through
|
||||
HAL_PWR_ConfigPVD(), HAL_PWR_EnablePVD() functions.
|
||||
(+) The PVD is stopped in Standby mode.
|
||||
-@- PVD is not available on STM32F030x4/x6/x8
|
||||
|
||||
*** VDDIO2 Monitor Configuration ***
|
||||
====================================
|
||||
[..]
|
||||
(+) VDDIO2 monitor is used to monitor the VDDIO2 power supply by comparing it
|
||||
to VREFInt Voltage
|
||||
(+) This monitor is internally connected to the EXTI line31
|
||||
and can generate an interrupt if enabled. This is done through
|
||||
HAL_PWREx_EnableVddio2Monitor() function.
|
||||
-@- VDDIO2 is available on STM32F07x/09x/04x
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
#if defined (STM32F031x6) || defined (STM32F051x8) || \
|
||||
defined (STM32F071xB) || defined (STM32F091xC) || \
|
||||
defined (STM32F042x6) || defined (STM32F072xB)
|
||||
/**
|
||||
* @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
|
||||
* @param sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
|
||||
* information for the PVD.
|
||||
* @note Refer to the electrical characteristics of your device datasheet for
|
||||
* more details about the voltage threshold corresponding to each
|
||||
* detection level.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
|
||||
assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
|
||||
|
||||
/* Set PLS[7:5] bits according to PVDLevel value */
|
||||
MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
|
||||
|
||||
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
|
||||
__HAL_PWR_PVD_EXTI_DISABLE_EVENT();
|
||||
__HAL_PWR_PVD_EXTI_DISABLE_IT();
|
||||
__HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();__HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
|
||||
|
||||
/* Configure interrupt mode */
|
||||
if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
|
||||
{
|
||||
__HAL_PWR_PVD_EXTI_ENABLE_IT();
|
||||
}
|
||||
|
||||
/* Configure event mode */
|
||||
if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
|
||||
{
|
||||
__HAL_PWR_PVD_EXTI_ENABLE_EVENT();
|
||||
}
|
||||
|
||||
/* Configure the edge */
|
||||
if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
|
||||
{
|
||||
__HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
|
||||
}
|
||||
|
||||
if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
|
||||
{
|
||||
__HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enables the Power Voltage Detector(PVD).
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_EnablePVD(void)
|
||||
{
|
||||
PWR->CR |= (uint32_t)PWR_CR_PVDE;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disables the Power Voltage Detector(PVD).
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_DisablePVD(void)
|
||||
{
|
||||
PWR->CR &= ~((uint32_t)PWR_CR_PVDE);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function handles the PWR PVD interrupt request.
|
||||
* @note This API should be called under the PVD_IRQHandler() or PVD_VDDIO2_IRQHandler().
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWR_PVD_IRQHandler(void)
|
||||
{
|
||||
/* Check PWR exti flag */
|
||||
if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
|
||||
{
|
||||
/* PWR PVD interrupt user callback */
|
||||
HAL_PWR_PVDCallback();
|
||||
|
||||
/* Clear PWR Exti pending bit */
|
||||
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief PWR PVD interrupt callback
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_PWR_PVDCallback(void)
|
||||
{
|
||||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||||
the HAL_PWR_PVDCallback could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
#endif /* defined (STM32F031x6) || defined (STM32F051x8) || */
|
||||
/* defined (STM32F071xB) || defined (STM32F091xC) || */
|
||||
/* defined (STM32F042x6) || defined (STM32F072xB) */
|
||||
|
||||
#if defined (STM32F042x6) || defined (STM32F048xx) || \
|
||||
defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
|
||||
defined (STM32F091xC) || defined (STM32F098xx)
|
||||
/**
|
||||
* @brief Enable VDDIO2 monitor: enable Exti 31 and falling edge detection.
|
||||
* @note If Exti 31 is enable correlty and VDDIO2 voltage goes below Vrefint,
|
||||
an interrupt is generated Irq line 1.
|
||||
NVIS has to be enable by user.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWREx_EnableVddio2Monitor(void)
|
||||
{
|
||||
__HAL_PWR_VDDIO2_EXTI_ENABLE_IT();
|
||||
__HAL_PWR_VDDIO2_EXTI_ENABLE_FALLING_EDGE();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the Vddio2 Monitor.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWREx_DisableVddio2Monitor(void)
|
||||
{
|
||||
__HAL_PWR_VDDIO2_EXTI_DISABLE_IT();
|
||||
__HAL_PWR_VDDIO2_EXTI_DISABLE_FALLING_EDGE();
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function handles the PWR Vddio2 monitor interrupt request.
|
||||
* @note This API should be called under the VDDIO2_IRQHandler() PVD_VDDIO2_IRQHandler().
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_PWREx_Vddio2Monitor_IRQHandler(void)
|
||||
{
|
||||
/* Check PWR exti flag */
|
||||
if(__HAL_PWR_VDDIO2_EXTI_GET_FLAG() != RESET)
|
||||
{
|
||||
/* PWR Vddio2 monitor interrupt user callback */
|
||||
HAL_PWREx_Vddio2MonitorCallback();
|
||||
|
||||
/* Clear PWR Exti pending bit */
|
||||
__HAL_PWR_VDDIO2_EXTI_CLEAR_FLAG();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief PWR Vddio2 Monitor interrupt callback
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_PWREx_Vddio2MonitorCallback(void)
|
||||
{
|
||||
/* NOTE : This function Should not be modified, when the callback is needed,
|
||||
the HAL_PWREx_Vddio2MonitorCallback could be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
#endif /* defined (STM32F042x6) || defined (STM32F048xx) || \
|
||||
defined (STM32F071xB) || defined (STM32F072xB) || defined (STM32F078xx) || \
|
||||
defined (STM32F091xC) || defined (STM32F098xx) */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_PWR_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
1365
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
Normal file
1365
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc.c
Normal file
File diff suppressed because it is too large
Load Diff
964
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c
Normal file
964
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_rcc_ex.c
Normal file
@@ -0,0 +1,964 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_rcc_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended RCC HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities RCC extension peripheral:
|
||||
* + Extended Peripheral Control functions
|
||||
* + Extended Clock Recovery System Control functions
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_RCC_MODULE_ENABLED
|
||||
|
||||
/** @defgroup RCCEx RCCEx
|
||||
* @brief RCC Extension HAL module driver.
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#if defined(CRS)
|
||||
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
|
||||
* @{
|
||||
*/
|
||||
/* Bit position in register */
|
||||
#define CRS_CFGR_FELIM_BITNUMBER 16
|
||||
#define CRS_CR_TRIM_BITNUMBER 8
|
||||
#define CRS_ISR_FECAP_BITNUMBER 16
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
#endif /* CRS */
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Private functions ---------------------------------------------------------*/
|
||||
|
||||
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
|
||||
* @brief Extended Peripheral Control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Extended Peripheral Control functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to control the RCC Clocks
|
||||
frequencies.
|
||||
[..]
|
||||
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
|
||||
select the RTC clock source; in this case the Backup domain will be reset in
|
||||
order to modify the RTC Clock source, as consequence RTC registers (including
|
||||
the backup registers) are set to their reset values.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initializes the RCC extended peripherals clocks according to the specified
|
||||
* parameters in the RCC_PeriphCLKInitTypeDef.
|
||||
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
|
||||
* contains the configuration information for the Extended Peripherals clocks
|
||||
* (USART, RTC, I2C, CEC and USB).
|
||||
*
|
||||
* @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select
|
||||
* the RTC clock source; in this case the Backup domain will be reset in
|
||||
* order to modify the RTC Clock source, as consequence RTC registers (including
|
||||
* the backup registers) and RCC_BDCR register are set to their reset values.
|
||||
*
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
|
||||
{
|
||||
uint32_t tickstart = 0U;
|
||||
uint32_t temp_reg = 0U;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
|
||||
|
||||
/*---------------------------- RTC configuration -------------------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
|
||||
{
|
||||
/* check for RTC Parameters used to output RTCCLK */
|
||||
assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
|
||||
|
||||
FlagStatus pwrclkchanged = RESET;
|
||||
|
||||
/* As soon as function is called to change RTC clock source, activation of the
|
||||
power domain is done. */
|
||||
/* Requires to enable write access to Backup Domain of necessary */
|
||||
if(__HAL_RCC_PWR_IS_CLK_DISABLED())
|
||||
{
|
||||
__HAL_RCC_PWR_CLK_ENABLE();
|
||||
pwrclkchanged = SET;
|
||||
}
|
||||
|
||||
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
|
||||
{
|
||||
/* Enable write access to Backup domain */
|
||||
SET_BIT(PWR->CR, PWR_CR_DBP);
|
||||
|
||||
/* Wait for Backup domain Write protection disable */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
|
||||
{
|
||||
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
|
||||
temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
|
||||
if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)))
|
||||
{
|
||||
/* Store the content of BDCR register before the reset of Backup Domain */
|
||||
temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
|
||||
/* RTC Clock selection can be changed only if the Backup Domain is reset */
|
||||
__HAL_RCC_BACKUPRESET_FORCE();
|
||||
__HAL_RCC_BACKUPRESET_RELEASE();
|
||||
/* Restore the Content of BDCR register */
|
||||
RCC->BDCR = temp_reg;
|
||||
|
||||
/* Wait for LSERDY if LSE was enabled */
|
||||
if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON))
|
||||
{
|
||||
/* Get Start Tick */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Wait till LSE is ready */
|
||||
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
|
||||
{
|
||||
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
|
||||
|
||||
/* Require to disable power clock if necessary */
|
||||
if(pwrclkchanged == SET)
|
||||
{
|
||||
__HAL_RCC_PWR_CLK_DISABLE();
|
||||
}
|
||||
}
|
||||
|
||||
/*------------------------------- USART1 Configuration ------------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
|
||||
|
||||
/* Configure the USART1 clock source */
|
||||
__HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
|
||||
}
|
||||
|
||||
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
||||
|| defined(STM32F091xC) || defined(STM32F098xx)
|
||||
/*----------------------------- USART2 Configuration --------------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
|
||||
|
||||
/* Configure the USART2 clock source */
|
||||
__HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
|
||||
}
|
||||
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
|
||||
/* STM32F091xC || STM32F098xx */
|
||||
|
||||
#if defined(STM32F091xC) || defined(STM32F098xx)
|
||||
/*----------------------------- USART3 Configuration --------------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
|
||||
|
||||
/* Configure the USART3 clock source */
|
||||
__HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
|
||||
}
|
||||
#endif /* STM32F091xC || STM32F098xx */
|
||||
|
||||
/*------------------------------ I2C1 Configuration ------------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
|
||||
|
||||
/* Configure the I2C1 clock source */
|
||||
__HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
|
||||
}
|
||||
|
||||
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
|
||||
/*------------------------------ USB Configuration ------------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
|
||||
|
||||
/* Configure the USB clock source */
|
||||
__HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
|
||||
}
|
||||
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
|
||||
|
||||
#if defined(STM32F042x6) || defined(STM32F048xx)\
|
||||
|| defined(STM32F051x8) || defined(STM32F058xx)\
|
||||
|| defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
||||
|| defined(STM32F091xC) || defined(STM32F098xx)
|
||||
/*------------------------------ CEC clock Configuration -------------------*/
|
||||
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
|
||||
|
||||
/* Configure the CEC clock source */
|
||||
__HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
|
||||
}
|
||||
#endif /* STM32F042x6 || STM32F048xx || */
|
||||
/* STM32F051x8 || STM32F058xx || */
|
||||
/* STM32F071xB || STM32F072xB || STM32F078xx || */
|
||||
/* STM32F091xC || STM32F098xx */
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the RCC_ClkInitStruct according to the internal
|
||||
* RCC configuration registers.
|
||||
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
|
||||
* returns the configuration information for the Extended Peripherals clocks
|
||||
* (USART, RTC, I2C, CEC and USB).
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
|
||||
{
|
||||
/* Set all possible values for the extended clock type parameter------------*/
|
||||
/* Common part first */
|
||||
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_RTC;
|
||||
/* Get the RTC configuration --------------------------------------------*/
|
||||
PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
|
||||
/* Get the USART1 clock configuration --------------------------------------------*/
|
||||
PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
|
||||
/* Get the I2C1 clock source -----------------------------------------------*/
|
||||
PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
|
||||
|
||||
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
||||
|| defined(STM32F091xC) || defined(STM32F098xx)
|
||||
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2;
|
||||
/* Get the USART2 clock source ---------------------------------------------*/
|
||||
PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
|
||||
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
|
||||
/* STM32F091xC || STM32F098xx */
|
||||
|
||||
#if defined(STM32F091xC) || defined(STM32F098xx)
|
||||
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3;
|
||||
/* Get the USART3 clock source ---------------------------------------------*/
|
||||
PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
|
||||
#endif /* STM32F091xC || STM32F098xx */
|
||||
|
||||
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
|
||||
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
|
||||
/* Get the USB clock source ---------------------------------------------*/
|
||||
PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
|
||||
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
|
||||
|
||||
#if defined(STM32F042x6) || defined(STM32F048xx)\
|
||||
|| defined(STM32F051x8) || defined(STM32F058xx)\
|
||||
|| defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
||||
|| defined(STM32F091xC) || defined(STM32F098xx)
|
||||
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC;
|
||||
/* Get the CEC clock source ------------------------------------------------*/
|
||||
PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
|
||||
#endif /* STM32F042x6 || STM32F048xx || */
|
||||
/* STM32F051x8 || STM32F058xx || */
|
||||
/* STM32F071xB || STM32F072xB || STM32F078xx || */
|
||||
/* STM32F091xC || STM32F098xx */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the peripheral clock frequency
|
||||
* @note Returns 0 if peripheral clock is unknown
|
||||
* @param PeriphClk Peripheral clock identifier
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
|
||||
@if STM32F042x6
|
||||
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F048xx
|
||||
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F051x8
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F058xx
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F070x6
|
||||
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
||||
@endif
|
||||
@if STM32F070xB
|
||||
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
||||
@endif
|
||||
@if STM32F071xB
|
||||
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F072xB
|
||||
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F078xx
|
||||
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F091xC
|
||||
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
@if STM32F098xx
|
||||
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock
|
||||
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
||||
@endif
|
||||
* @retval Frequency in Hz (0: means that no available frequency for the peripheral)
|
||||
*/
|
||||
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
|
||||
{
|
||||
/* frequency == 0 : means that no available frequency for the peripheral */
|
||||
uint32_t frequency = 0U;
|
||||
|
||||
uint32_t srcclk = 0U;
|
||||
#if defined(USB)
|
||||
uint32_t pllmull = 0U, pllsource = 0U, predivfactor = 0U;
|
||||
#endif /* USB */
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
|
||||
|
||||
switch (PeriphClk)
|
||||
{
|
||||
case RCC_PERIPHCLK_RTC:
|
||||
{
|
||||
/* Get the current RTC source */
|
||||
srcclk = __HAL_RCC_GET_RTC_SOURCE();
|
||||
|
||||
/* Check if LSE is ready and if RTC clock selection is LSE */
|
||||
if ((srcclk == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
||||
{
|
||||
frequency = LSE_VALUE;
|
||||
}
|
||||
/* Check if LSI is ready and if RTC clock selection is LSI */
|
||||
else if ((srcclk == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
|
||||
{
|
||||
frequency = LSI_VALUE;
|
||||
}
|
||||
/* Check if HSE is ready and if RTC clock selection is HSI_DIV32*/
|
||||
else if ((srcclk == RCC_RTCCLKSOURCE_HSE_DIV32) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
|
||||
{
|
||||
frequency = HSE_VALUE / 32U;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case RCC_PERIPHCLK_USART1:
|
||||
{
|
||||
/* Get the current USART1 source */
|
||||
srcclk = __HAL_RCC_GET_USART1_SOURCE();
|
||||
|
||||
/* Check if USART1 clock selection is PCLK1 */
|
||||
if (srcclk == RCC_USART1CLKSOURCE_PCLK1)
|
||||
{
|
||||
frequency = HAL_RCC_GetPCLK1Freq();
|
||||
}
|
||||
/* Check if HSI is ready and if USART1 clock selection is HSI */
|
||||
else if ((srcclk == RCC_USART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
||||
{
|
||||
frequency = HSI_VALUE;
|
||||
}
|
||||
/* Check if USART1 clock selection is SYSCLK */
|
||||
else if (srcclk == RCC_USART1CLKSOURCE_SYSCLK)
|
||||
{
|
||||
frequency = HAL_RCC_GetSysClockFreq();
|
||||
}
|
||||
/* Check if LSE is ready and if USART1 clock selection is LSE */
|
||||
else if ((srcclk == RCC_USART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
||||
{
|
||||
frequency = LSE_VALUE;
|
||||
}
|
||||
break;
|
||||
}
|
||||
#if defined(RCC_CFGR3_USART2SW)
|
||||
case RCC_PERIPHCLK_USART2:
|
||||
{
|
||||
/* Get the current USART2 source */
|
||||
srcclk = __HAL_RCC_GET_USART2_SOURCE();
|
||||
|
||||
/* Check if USART2 clock selection is PCLK1 */
|
||||
if (srcclk == RCC_USART2CLKSOURCE_PCLK1)
|
||||
{
|
||||
frequency = HAL_RCC_GetPCLK1Freq();
|
||||
}
|
||||
/* Check if HSI is ready and if USART2 clock selection is HSI */
|
||||
else if ((srcclk == RCC_USART2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
||||
{
|
||||
frequency = HSI_VALUE;
|
||||
}
|
||||
/* Check if USART2 clock selection is SYSCLK */
|
||||
else if (srcclk == RCC_USART2CLKSOURCE_SYSCLK)
|
||||
{
|
||||
frequency = HAL_RCC_GetSysClockFreq();
|
||||
}
|
||||
/* Check if LSE is ready and if USART2 clock selection is LSE */
|
||||
else if ((srcclk == RCC_USART2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
||||
{
|
||||
frequency = LSE_VALUE;
|
||||
}
|
||||
break;
|
||||
}
|
||||
#endif /* RCC_CFGR3_USART2SW */
|
||||
#if defined(RCC_CFGR3_USART3SW)
|
||||
case RCC_PERIPHCLK_USART3:
|
||||
{
|
||||
/* Get the current USART3 source */
|
||||
srcclk = __HAL_RCC_GET_USART3_SOURCE();
|
||||
|
||||
/* Check if USART3 clock selection is PCLK1 */
|
||||
if (srcclk == RCC_USART3CLKSOURCE_PCLK1)
|
||||
{
|
||||
frequency = HAL_RCC_GetPCLK1Freq();
|
||||
}
|
||||
/* Check if HSI is ready and if USART3 clock selection is HSI */
|
||||
else if ((srcclk == RCC_USART3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
||||
{
|
||||
frequency = HSI_VALUE;
|
||||
}
|
||||
/* Check if USART3 clock selection is SYSCLK */
|
||||
else if (srcclk == RCC_USART3CLKSOURCE_SYSCLK)
|
||||
{
|
||||
frequency = HAL_RCC_GetSysClockFreq();
|
||||
}
|
||||
/* Check if LSE is ready and if USART3 clock selection is LSE */
|
||||
else if ((srcclk == RCC_USART3CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
||||
{
|
||||
frequency = LSE_VALUE;
|
||||
}
|
||||
break;
|
||||
}
|
||||
#endif /* RCC_CFGR3_USART3SW */
|
||||
case RCC_PERIPHCLK_I2C1:
|
||||
{
|
||||
/* Get the current I2C1 source */
|
||||
srcclk = __HAL_RCC_GET_I2C1_SOURCE();
|
||||
|
||||
/* Check if HSI is ready and if I2C1 clock selection is HSI */
|
||||
if ((srcclk == RCC_I2C1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
||||
{
|
||||
frequency = HSI_VALUE;
|
||||
}
|
||||
/* Check if I2C1 clock selection is SYSCLK */
|
||||
else if (srcclk == RCC_I2C1CLKSOURCE_SYSCLK)
|
||||
{
|
||||
frequency = HAL_RCC_GetSysClockFreq();
|
||||
}
|
||||
break;
|
||||
}
|
||||
#if defined(USB)
|
||||
case RCC_PERIPHCLK_USB:
|
||||
{
|
||||
/* Get the current USB source */
|
||||
srcclk = __HAL_RCC_GET_USB_SOURCE();
|
||||
|
||||
/* Check if PLL is ready and if USB clock selection is PLL */
|
||||
if ((srcclk == RCC_USBCLKSOURCE_PLL) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY)))
|
||||
{
|
||||
/* Get PLL clock source and multiplication factor ----------------------*/
|
||||
pllmull = RCC->CFGR & RCC_CFGR_PLLMUL;
|
||||
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
|
||||
pllmull = (pllmull >> RCC_CFGR_PLLMUL_BITNUMBER) + 2U;
|
||||
predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1U;
|
||||
|
||||
if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
|
||||
{
|
||||
/* HSE used as PLL clock source : frequency = HSE/PREDIV * PLLMUL */
|
||||
frequency = (HSE_VALUE/predivfactor) * pllmull;
|
||||
}
|
||||
#if defined(RCC_CR2_HSI48ON)
|
||||
else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
|
||||
{
|
||||
/* HSI48 used as PLL clock source : frequency = HSI48/PREDIV * PLLMUL */
|
||||
frequency = (HSI48_VALUE / predivfactor) * pllmull;
|
||||
}
|
||||
#endif /* RCC_CR2_HSI48ON */
|
||||
else
|
||||
{
|
||||
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F078xx) || defined(STM32F072xB) || defined(STM32F070xB)
|
||||
/* HSI used as PLL clock source : frequency = HSI/PREDIV * PLLMUL */
|
||||
frequency = (HSI_VALUE / predivfactor) * pllmull;
|
||||
#else
|
||||
/* HSI used as PLL clock source : frequency = HSI/2U * PLLMUL */
|
||||
frequency = (HSI_VALUE >> 1U) * pllmull;
|
||||
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB */
|
||||
}
|
||||
}
|
||||
#if defined(RCC_CR2_HSI48ON)
|
||||
/* Check if HSI48 is ready and if USB clock selection is HSI48 */
|
||||
else if ((srcclk == RCC_USBCLKSOURCE_HSI48) && (HAL_IS_BIT_SET(RCC->CR2, RCC_CR2_HSI48RDY)))
|
||||
{
|
||||
frequency = HSI48_VALUE;
|
||||
}
|
||||
#endif /* RCC_CR2_HSI48ON */
|
||||
break;
|
||||
}
|
||||
#endif /* USB */
|
||||
#if defined(CEC)
|
||||
case RCC_PERIPHCLK_CEC:
|
||||
{
|
||||
/* Get the current CEC source */
|
||||
srcclk = __HAL_RCC_GET_CEC_SOURCE();
|
||||
|
||||
/* Check if HSI is ready and if CEC clock selection is HSI */
|
||||
if ((srcclk == RCC_CECCLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
||||
{
|
||||
frequency = HSI_VALUE;
|
||||
}
|
||||
/* Check if LSE is ready and if CEC clock selection is LSE */
|
||||
else if ((srcclk == RCC_CECCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
||||
{
|
||||
frequency = LSE_VALUE;
|
||||
}
|
||||
break;
|
||||
}
|
||||
#endif /* CEC */
|
||||
default:
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
return(frequency);
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#if defined(CRS)
|
||||
|
||||
/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions
|
||||
* @brief Extended Clock Recovery System Control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Extended Clock Recovery System Control functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
For devices with Clock Recovery System feature (CRS), RCC Extension HAL driver can be used as follows:
|
||||
|
||||
(#) In System clock config, HSI48 needs to be enabled
|
||||
|
||||
(#) Enable CRS clock in IP MSP init which will use CRS functions
|
||||
|
||||
(#) Call CRS functions as follows:
|
||||
(##) Prepare synchronization configuration necessary for HSI48 calibration
|
||||
(+++) Default values can be set for frequency Error Measurement (reload and error limit)
|
||||
and also HSI48 oscillator smooth trimming.
|
||||
(+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate
|
||||
directly reload value with target and synchronization frequencies values
|
||||
(##) Call function HAL_RCCEx_CRSConfig which
|
||||
(+++) Reset CRS registers to their default values.
|
||||
(+++) Configure CRS registers with synchronization configuration
|
||||
(+++) Enable automatic calibration and frequency error counter feature
|
||||
Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
|
||||
periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
|
||||
provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
|
||||
precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
|
||||
should be used as SYNC signal.
|
||||
|
||||
(##) A polling function is provided to wait for complete synchronization
|
||||
(+++) Call function HAL_RCCEx_CRSWaitSynchronization()
|
||||
(+++) According to CRS status, user can decide to adjust again the calibration or continue
|
||||
application if synchronization is OK
|
||||
|
||||
(#) User can retrieve information related to synchronization in calling function
|
||||
HAL_RCCEx_CRSGetSynchronizationInfo()
|
||||
|
||||
(#) Regarding synchronization status and synchronization information, user can try a new calibration
|
||||
in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
|
||||
Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
|
||||
it means that the actual frequency is lower than the target (and so, that the TRIM value should be
|
||||
incremented), while when it is detected during the upcounting phase it means that the actual frequency
|
||||
is higher (and that the TRIM value should be decremented).
|
||||
|
||||
(#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go
|
||||
through CRS Handler (RCC_IRQn/RCC_IRQHandler)
|
||||
(++) Call function HAL_RCCEx_CRSConfig()
|
||||
(++) Enable RCC_IRQn (thanks to NVIC functions)
|
||||
(++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT)
|
||||
(++) Implement CRS status management in the following user callbacks called from
|
||||
HAL_RCCEx_CRS_IRQHandler():
|
||||
(+++) HAL_RCCEx_CRS_SyncOkCallback()
|
||||
(+++) HAL_RCCEx_CRS_SyncWarnCallback()
|
||||
(+++) HAL_RCCEx_CRS_ExpectedSyncCallback()
|
||||
(+++) HAL_RCCEx_CRS_ErrorCallback()
|
||||
|
||||
(#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
|
||||
This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Start automatic synchronization for polling mode
|
||||
* @param pInit Pointer on RCC_CRSInitTypeDef structure
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
|
||||
{
|
||||
uint32_t value = 0U;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
|
||||
assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
|
||||
assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
|
||||
assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
|
||||
assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
|
||||
assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
|
||||
|
||||
/* CONFIGURATION */
|
||||
|
||||
/* Before configuration, reset CRS registers to their default values*/
|
||||
__HAL_RCC_CRS_FORCE_RESET();
|
||||
__HAL_RCC_CRS_RELEASE_RESET();
|
||||
|
||||
/* Set the SYNCDIV[2:0] bits according to Prescaler value */
|
||||
/* Set the SYNCSRC[1:0] bits according to Source value */
|
||||
/* Set the SYNCSPOL bit according to Polarity value */
|
||||
value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
|
||||
/* Set the RELOAD[15:0] bits according to ReloadValue value */
|
||||
value |= pInit->ReloadValue;
|
||||
/* Set the FELIM[7:0] bits according to ErrorLimitValue value */
|
||||
value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER);
|
||||
WRITE_REG(CRS->CFGR, value);
|
||||
|
||||
/* Adjust HSI48 oscillator smooth trimming */
|
||||
/* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
|
||||
MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER));
|
||||
|
||||
/* START AUTOMATIC SYNCHRONIZATION*/
|
||||
|
||||
/* Enable Automatic trimming & Frequency error counter */
|
||||
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Generate the software synchronization event
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
|
||||
{
|
||||
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return synchronization info
|
||||
* @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
|
||||
{
|
||||
/* Check the parameter */
|
||||
assert_param(pSynchroInfo != NULL);
|
||||
|
||||
/* Get the reload value */
|
||||
pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
|
||||
|
||||
/* Get HSI48 oscillator smooth trimming */
|
||||
pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER);
|
||||
|
||||
/* Get Frequency error capture */
|
||||
pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER);
|
||||
|
||||
/* Get Frequency error direction */
|
||||
pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Wait for CRS Synchronization status.
|
||||
* @param Timeout Duration of the timeout
|
||||
* @note Timeout is based on the maximum time to receive a SYNC event based on synchronization
|
||||
* frequency.
|
||||
* @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
|
||||
* @retval Combination of Synchronization status
|
||||
* This parameter can be a combination of the following values:
|
||||
* @arg @ref RCC_CRS_TIMEOUT
|
||||
* @arg @ref RCC_CRS_SYNCOK
|
||||
* @arg @ref RCC_CRS_SYNCWARN
|
||||
* @arg @ref RCC_CRS_SYNCERR
|
||||
* @arg @ref RCC_CRS_SYNCMISS
|
||||
* @arg @ref RCC_CRS_TRIMOVF
|
||||
*/
|
||||
uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
|
||||
{
|
||||
uint32_t crsstatus = RCC_CRS_NONE;
|
||||
uint32_t tickstart = 0U;
|
||||
|
||||
/* Get timeout */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Wait for CRS flag or timeout detection */
|
||||
do
|
||||
{
|
||||
if(Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
||||
{
|
||||
crsstatus = RCC_CRS_TIMEOUT;
|
||||
}
|
||||
}
|
||||
/* Check CRS SYNCOK flag */
|
||||
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
|
||||
{
|
||||
/* CRS SYNC event OK */
|
||||
crsstatus |= RCC_CRS_SYNCOK;
|
||||
|
||||
/* Clear CRS SYNC event OK bit */
|
||||
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
|
||||
}
|
||||
|
||||
/* Check CRS SYNCWARN flag */
|
||||
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
|
||||
{
|
||||
/* CRS SYNC warning */
|
||||
crsstatus |= RCC_CRS_SYNCWARN;
|
||||
|
||||
/* Clear CRS SYNCWARN bit */
|
||||
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
|
||||
}
|
||||
|
||||
/* Check CRS TRIM overflow flag */
|
||||
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
|
||||
{
|
||||
/* CRS SYNC Error */
|
||||
crsstatus |= RCC_CRS_TRIMOVF;
|
||||
|
||||
/* Clear CRS Error bit */
|
||||
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
|
||||
}
|
||||
|
||||
/* Check CRS Error flag */
|
||||
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
|
||||
{
|
||||
/* CRS SYNC Error */
|
||||
crsstatus |= RCC_CRS_SYNCERR;
|
||||
|
||||
/* Clear CRS Error bit */
|
||||
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
|
||||
}
|
||||
|
||||
/* Check CRS SYNC Missed flag */
|
||||
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
|
||||
{
|
||||
/* CRS SYNC Missed */
|
||||
crsstatus |= RCC_CRS_SYNCMISS;
|
||||
|
||||
/* Clear CRS SYNC Missed bit */
|
||||
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
|
||||
}
|
||||
|
||||
/* Check CRS Expected SYNC flag */
|
||||
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
|
||||
{
|
||||
/* frequency error counter reached a zero value */
|
||||
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
|
||||
}
|
||||
} while(RCC_CRS_NONE == crsstatus);
|
||||
|
||||
return crsstatus;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the Clock Recovery System interrupt request.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_RCCEx_CRS_IRQHandler(void)
|
||||
{
|
||||
uint32_t crserror = RCC_CRS_NONE;
|
||||
/* Get current IT flags and IT sources values */
|
||||
uint32_t itflags = READ_REG(CRS->ISR);
|
||||
uint32_t itsources = READ_REG(CRS->CR);
|
||||
|
||||
/* Check CRS SYNCOK flag */
|
||||
if(((itflags & RCC_CRS_FLAG_SYNCOK) != RESET) && ((itsources & RCC_CRS_IT_SYNCOK) != RESET))
|
||||
{
|
||||
/* Clear CRS SYNC event OK flag */
|
||||
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
|
||||
|
||||
/* user callback */
|
||||
HAL_RCCEx_CRS_SyncOkCallback();
|
||||
}
|
||||
/* Check CRS SYNCWARN flag */
|
||||
else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != RESET) && ((itsources & RCC_CRS_IT_SYNCWARN) != RESET))
|
||||
{
|
||||
/* Clear CRS SYNCWARN flag */
|
||||
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
|
||||
|
||||
/* user callback */
|
||||
HAL_RCCEx_CRS_SyncWarnCallback();
|
||||
}
|
||||
/* Check CRS Expected SYNC flag */
|
||||
else if(((itflags & RCC_CRS_FLAG_ESYNC) != RESET) && ((itsources & RCC_CRS_IT_ESYNC) != RESET))
|
||||
{
|
||||
/* frequency error counter reached a zero value */
|
||||
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
|
||||
|
||||
/* user callback */
|
||||
HAL_RCCEx_CRS_ExpectedSyncCallback();
|
||||
}
|
||||
/* Check CRS Error flags */
|
||||
else
|
||||
{
|
||||
if(((itflags & RCC_CRS_FLAG_ERR) != RESET) && ((itsources & RCC_CRS_IT_ERR) != RESET))
|
||||
{
|
||||
if((itflags & RCC_CRS_FLAG_SYNCERR) != RESET)
|
||||
{
|
||||
crserror |= RCC_CRS_SYNCERR;
|
||||
}
|
||||
if((itflags & RCC_CRS_FLAG_SYNCMISS) != RESET)
|
||||
{
|
||||
crserror |= RCC_CRS_SYNCMISS;
|
||||
}
|
||||
if((itflags & RCC_CRS_FLAG_TRIMOVF) != RESET)
|
||||
{
|
||||
crserror |= RCC_CRS_TRIMOVF;
|
||||
}
|
||||
|
||||
/* Clear CRS Error flags */
|
||||
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
|
||||
|
||||
/* user error callback */
|
||||
HAL_RCCEx_CRS_ErrorCallback(crserror);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RCCEx Clock Recovery System SYNCOK interrupt callback.
|
||||
* @retval none
|
||||
*/
|
||||
__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
|
||||
{
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RCCEx Clock Recovery System SYNCWARN interrupt callback.
|
||||
* @retval none
|
||||
*/
|
||||
__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
|
||||
{
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RCCEx Clock Recovery System Expected SYNC interrupt callback.
|
||||
* @retval none
|
||||
*/
|
||||
__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
|
||||
{
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RCCEx Clock Recovery System Error interrupt callback.
|
||||
* @param Error Combination of Error status.
|
||||
* This parameter can be a combination of the following values:
|
||||
* @arg @ref RCC_CRS_SYNCERR
|
||||
* @arg @ref RCC_CRS_SYNCMISS
|
||||
* @arg @ref RCC_CRS_TRIMOVF
|
||||
* @retval none
|
||||
*/
|
||||
__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(Error);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* CRS */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_RCC_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
7635
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c
Normal file
7635
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim.c
Normal file
File diff suppressed because it is too large
Load Diff
2390
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c
Normal file
2390
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_tim_ex.c
Normal file
File diff suppressed because it is too large
Load Diff
4128
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c
Normal file
4128
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart.c
Normal file
File diff suppressed because it is too large
Load Diff
816
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c
Normal file
816
Drivers/STM32F0xx_HAL_Driver/Src/stm32f0xx_hal_uart_ex.c
Normal file
@@ -0,0 +1,816 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32f0xx_hal_uart_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended UART HAL module driver.
|
||||
* This file provides firmware functions to manage the following extended
|
||||
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
|
||||
* + Initialization and de-initialization functions
|
||||
* + Peripheral Control functions
|
||||
*
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### UART peripheral extended features #####
|
||||
==============================================================================
|
||||
|
||||
(#) Declare a UART_HandleTypeDef handle structure.
|
||||
|
||||
(#) For the UART RS485 Driver Enable mode, initialize the UART registers
|
||||
by calling the HAL_RS485Ex_Init() API.
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* <h2><center>© Copyright (c) 2016 STMicroelectronics.
|
||||
* All rights reserved.</center></h2>
|
||||
*
|
||||
* This software component is licensed by ST under BSD 3-Clause license,
|
||||
* the "License"; You may not use this file except in compliance with the
|
||||
* License. You may obtain a copy of the License at:
|
||||
* opensource.org/licenses/BSD-3-Clause
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32f0xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32F0xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx UARTEx
|
||||
* @brief UART Extended HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_UART_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
|
||||
* @{
|
||||
*/
|
||||
#if defined(USART_CR1_UESM)
|
||||
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
|
||||
#endif /* USART_CR1_UESM */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Extended Initialization and Configuration Functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and Configuration functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
|
||||
in asynchronous mode.
|
||||
(+) For the asynchronous mode the parameters below can be configured:
|
||||
(++) Baud Rate
|
||||
(++) Word Length
|
||||
(++) Stop Bit
|
||||
(++) Parity: If the parity is enabled, then the MSB bit of the data written
|
||||
in the data register is transmitted but is changed by the parity bit.
|
||||
(++) Hardware flow control
|
||||
(++) Receiver/transmitter modes
|
||||
(++) Over Sampling Method
|
||||
(++) One-Bit Sampling Method
|
||||
(+) For the asynchronous mode, the following advanced features can be configured as well:
|
||||
(++) TX and/or RX pin level inversion
|
||||
(++) data logical level inversion
|
||||
(++) RX and TX pins swap
|
||||
(++) RX overrun detection disabling
|
||||
(++) DMA disabling on RX error
|
||||
(++) MSB first on communication line
|
||||
(++) auto Baud rate detection
|
||||
[..]
|
||||
The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
|
||||
procedures (details for the procedures are available in reference manual).
|
||||
|
||||
@endverbatim
|
||||
|
||||
Depending on the frame length defined by the M1 and M0 bits (7-bit,
|
||||
8-bit or 9-bit), the possible UART formats are listed in the
|
||||
following table.
|
||||
|
||||
Table 1. UART frame format.
|
||||
+-----------------------------------------------------------------------+
|
||||
| M1 bit | M0 bit | PCE bit | UART frame |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
|
||||
+-----------------------------------------------------------------------+
|
||||
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the RS485 Driver enable feature according to the specified
|
||||
* parameters in the UART_InitTypeDef and creates the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @param Polarity Select the driver enable polarity.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
|
||||
* @arg @ref UART_DE_POLARITY_LOW DE signal is active low
|
||||
* @param AssertionTime Driver Enable assertion time:
|
||||
* 5-bit value defining the time between the activation of the DE (Driver Enable)
|
||||
* signal and the beginning of the start bit. It is expressed in sample time
|
||||
* units (1/8 or 1/16 bit time, depending on the oversampling rate)
|
||||
* @param DeassertionTime Driver Enable deassertion time:
|
||||
* 5-bit value defining the time between the end of the last stop bit, in a
|
||||
* transmitted message, and the de-activation of the DE (Driver Enable) signal.
|
||||
* It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
|
||||
* oversampling rate).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
|
||||
uint32_t DeassertionTime)
|
||||
{
|
||||
uint32_t temp;
|
||||
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
/* Check the Driver Enable UART instance */
|
||||
assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
|
||||
|
||||
/* Check the Driver Enable polarity */
|
||||
assert_param(IS_UART_DE_POLARITY(Polarity));
|
||||
|
||||
/* Check the Driver Enable assertion time */
|
||||
assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
|
||||
|
||||
/* Check the Driver Enable deassertion time */
|
||||
assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK, CORTEX */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
|
||||
SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
|
||||
|
||||
/* Set the Driver Enable polarity */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
|
||||
|
||||
/* Set the Driver Enable assertion and deassertion times */
|
||||
temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
|
||||
temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
|
||||
MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
|
||||
* @brief Extended functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
This subsection provides a set of Wakeup and FIFO mode related callback functions.
|
||||
|
||||
#if defined(USART_CR1_UESM)
|
||||
#if defined(USART_CR3_WUFIE)
|
||||
(#) Wakeup from Stop mode Callback:
|
||||
(+) HAL_UARTEx_WakeupCallback()
|
||||
|
||||
#endif
|
||||
#endif
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
#if defined(USART_CR1_UESM)
|
||||
#if defined(USART_CR3_WUFIE)
|
||||
/**
|
||||
* @brief UART wakeup from Stop mode callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UARTEx_WakeupCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
#endif /* USART_CR3_WUFIE */
|
||||
#endif /* USART_CR1_UESM */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
|
||||
* @brief Extended Peripheral Control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
===============================================================================
|
||||
[..] This section provides the following functions:
|
||||
(+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
|
||||
detection length to more than 4 bits for multiprocessor address mark wake up.
|
||||
#if defined(USART_CR1_UESM)
|
||||
(+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
|
||||
trigger: address match, Start Bit detection or RXNE bit status.
|
||||
(+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
|
||||
(+) HAL_UARTEx_DisableStopMode() API disables the above functionality
|
||||
#endif
|
||||
|
||||
[..] This subsection also provides a set of additional functions providing enhanced reception
|
||||
services to user. (For example, these functions allow application to handle use cases
|
||||
where number of data to be received is unknown).
|
||||
|
||||
(#) Compared to standard reception services which only consider number of received
|
||||
data elements as reception completion criteria, these functions also consider additional events
|
||||
as triggers for updating reception status to caller :
|
||||
(+) Detection of inactivity period (RX line has not been active for a given period).
|
||||
(++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
|
||||
for 1 frame time, after last received byte.
|
||||
(++) RX inactivity detected by RTO, i.e. line has been in idle state
|
||||
for a programmable time, after last received byte.
|
||||
(+) Detection that a specific character has been received.
|
||||
|
||||
(#) There are two mode of transfer:
|
||||
(+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
|
||||
or till IDLE event occurs. Reception is handled only during function execution.
|
||||
When function exits, no data reception could occur. HAL status and number of actually received data elements,
|
||||
are returned by function after finishing transfer.
|
||||
(+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
|
||||
These API's return the HAL status.
|
||||
The end of the data processing will be indicated through the
|
||||
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
|
||||
The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
|
||||
The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
|
||||
|
||||
(#) Blocking mode API:
|
||||
(+) HAL_UARTEx_ReceiveToIdle()
|
||||
|
||||
(#) Non-Blocking mode API with Interrupt:
|
||||
(+) HAL_UARTEx_ReceiveToIdle_IT()
|
||||
|
||||
(#) Non-Blocking mode API with DMA:
|
||||
(+) HAL_UARTEx_ReceiveToIdle_DMA()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief By default in multiprocessor mode, when the wake up method is set
|
||||
* to address mark, the UART handles only 4-bit long addresses detection;
|
||||
* this API allows to enable longer addresses detection (6-, 7- or 8-bit
|
||||
* long).
|
||||
* @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
|
||||
* 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
|
||||
* @param huart UART handle.
|
||||
* @param AddressLength This parameter can be one of the following values:
|
||||
* @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
|
||||
* @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the address length parameter */
|
||||
assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the address length */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_UESM)
|
||||
/**
|
||||
* @brief Set Wakeup from Stop mode interrupt flag selection.
|
||||
* @note It is the application responsibility to enable the interrupt used as
|
||||
* usart_wkup interrupt source before entering low-power mode.
|
||||
* @param huart UART handle.
|
||||
* @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_WAKEUP_ON_ADDRESS
|
||||
* @arg @ref UART_WAKEUP_ON_STARTBIT
|
||||
* @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* check the wake-up from stop mode UART instance */
|
||||
assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
|
||||
/* check the wake-up selection parameter */
|
||||
assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
#if defined(USART_CR3_WUS)
|
||||
/* Set the wake-up selection scheme */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
|
||||
#endif /* USART_CR3_WUS */
|
||||
|
||||
if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
|
||||
{
|
||||
UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
|
||||
}
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Wait until REACK flag is set */
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
||||
{
|
||||
status = HAL_TIMEOUT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize the UART State */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
}
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable UART Stop Mode.
|
||||
* @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set UESM bit */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable UART Stop Mode.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Clear UESM bit */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
#endif /* USART_CR1_UESM */
|
||||
/**
|
||||
* @brief Receive an amount of data in blocking mode till either the expected number of data
|
||||
* is received or an IDLE event occurs.
|
||||
* @note HAL_OK is returned if reception is completed (expected number of data has been received)
|
||||
* or if reception is stopped after IDLE event (less than the expected number of data has been received)
|
||||
* In this case, RxLen output parameter indicates number of data available in reception buffer.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* address of user data buffer for storing data to be received, should be aligned on a half word frontier
|
||||
* (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
|
||||
* use of specific alignment compilation directives or pragmas might be required to ensure proper
|
||||
* alignment for pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @param RxLen Number of data elements finally received
|
||||
* (could be lower than Size, in case reception ends on IDLE event)
|
||||
* @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
|
||||
uint32_t Timeout)
|
||||
{
|
||||
uint8_t *pdata8bits;
|
||||
uint16_t *pdata16bits;
|
||||
uint16_t uhMask;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
|
||||
should be aligned on a uint16_t frontier, as data to be received from RDR will be
|
||||
handled through a uint16_t cast. */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
if ((((uint32_t)pData) & 1U) != 0U)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
huart->RxXferSize = Size;
|
||||
huart->RxXferCount = Size;
|
||||
|
||||
/* Computation of UART mask to apply to RDR register */
|
||||
UART_MASK_COMPUTATION(huart);
|
||||
uhMask = huart->Mask;
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
pdata8bits = NULL;
|
||||
pdata16bits = (uint16_t *) pData;
|
||||
}
|
||||
else
|
||||
{
|
||||
pdata8bits = pData;
|
||||
pdata16bits = NULL;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Initialize output number of received elements */
|
||||
*RxLen = 0U;
|
||||
|
||||
/* as long as data have to be received */
|
||||
while (huart->RxXferCount > 0U)
|
||||
{
|
||||
/* Check if IDLE flag is set */
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
|
||||
{
|
||||
/* Clear IDLE flag in ISR */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
|
||||
/* If Set, but no data ever received, clear flag without exiting loop */
|
||||
/* If Set, and data has already been received, this means Idle Event is valid : End reception */
|
||||
if (*RxLen > 0U)
|
||||
{
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if RXNE flag is set */
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
|
||||
{
|
||||
if (pdata8bits == NULL)
|
||||
{
|
||||
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
|
||||
pdata16bits++;
|
||||
}
|
||||
else
|
||||
{
|
||||
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
|
||||
pdata8bits++;
|
||||
}
|
||||
/* Increment number of received elements */
|
||||
*RxLen += 1U;
|
||||
huart->RxXferCount--;
|
||||
}
|
||||
|
||||
/* Check for the Timeout */
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
||||
{
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set number of received elements in output parameter : RxLen */
|
||||
*RxLen = huart->RxXferSize - huart->RxXferCount;
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in interrupt mode till either the expected number of data
|
||||
* is received or an IDLE event occurs.
|
||||
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
|
||||
* to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
|
||||
* number of received data elements.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* address of user data buffer for storing data to be received, should be aligned on a half word frontier
|
||||
* (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
|
||||
* use of specific alignment compilation directives or pragmas might be required
|
||||
* to ensure proper alignment for pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef status;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
|
||||
should be aligned on a uint16_t frontier, as data to be received from RDR will be
|
||||
handled through a uint16_t cast. */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
if ((((uint32_t)pData) & 1U) != 0U)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set Reception type to reception till IDLE Event*/
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
|
||||
status = UART_Start_Receive_IT(huart, pData, Size);
|
||||
|
||||
/* Check Rx process has been successfully started */
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In case of errors already pending when reception is started,
|
||||
Interrupts may have already been raised and lead to reception abortion.
|
||||
(Overrun error for instance).
|
||||
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in DMA mode till either the expected number
|
||||
* of data is received or an IDLE event occurs.
|
||||
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
|
||||
* to DMA services, transferring automatically received data elements in user reception buffer and
|
||||
* calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
|
||||
* reception phase as ended. In all cases, callback execution will indicate number of received data elements.
|
||||
* @note When the UART parity is enabled (PCE = 1), the received data contain
|
||||
* the parity bit (MSB position).
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* address of user data buffer for storing data to be received, should be aligned on a half word frontier
|
||||
* (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
|
||||
* use of specific alignment compilation directives or pragmas might be required
|
||||
* to ensure proper alignment for pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef status;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
|
||||
should be aligned on a uint16_t frontier, as data copy from RDR will be
|
||||
handled by DMA from a uint16_t frontier. */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
if ((((uint32_t)pData) & 1U) != 0U)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set Reception type to reception till IDLE Event*/
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
|
||||
status = UART_Start_Receive_DMA(huart, pData, Size);
|
||||
|
||||
/* Check Rx process has been successfully started */
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In case of errors already pending when reception is started,
|
||||
Interrupts may have already been raised and lead to reception abortion.
|
||||
(Overrun error for instance).
|
||||
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
#if defined(USART_CR1_UESM)
|
||||
|
||||
/**
|
||||
* @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
|
||||
* @param huart UART handle.
|
||||
* @param WakeUpSelection UART wake up from stop mode parameters.
|
||||
* @retval None
|
||||
*/
|
||||
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
|
||||
{
|
||||
assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
|
||||
|
||||
/* Set the USART address length */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
|
||||
|
||||
/* Set the USART address node */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
|
||||
}
|
||||
#endif /* USART_CR1_UESM */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_UART_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
Reference in New Issue
Block a user