Compare commits

...

3 Commits

  1. 37
      download_model.py
  2. 181
      generation_loop.py
  3. 79
      inference.py
  4. 76
      inference_profile_test.py
  5. 188
      llama.py
  6. 95
      model_selection.py
  7. 20
      modelconfig.py
  8. 3
      requirements.txt

37
download_model.py

@ -0,0 +1,37 @@
from inference import Inference
from modelconfig import Modelconfig
def main():
# Model size: 3.21B params
Inference(Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True))
# Model size: 1.24B params
Inference(Modelconfig("unsloth/Llama-3.2-1B", load_in_8bit=True))
# Model size: 3.21B params
Inference(Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True))
# Model size: 4.65B params
Inference(Modelconfig("unsloth/llama-3-8b-bnb-4bit", load_in_4bit=True))
# Model size: 3.21B params
Inference(Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_4bit=True))
# Model size: 5.21B params
Inference(Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit", load_in_4bit=True))
# Model size: 4.46B params
Inference(Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit", load_in_4bit=True))
# Model size: 3.09B params
Inference(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True))
# Model size: 3.87B params
Inference(Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit", load_in_4bit=True))
if __name__ == "__main__":
main()

181
generation_loop.py

@ -0,0 +1,181 @@
import time
import json
import random
from tool_helper import tool_list, parse_and_execute_tool_call
from inference import Inference, torch_reseed
def check_append_file(prompt: str) -> str:
if prompt.startswith("@"):
prompt = prompt[1:] # Remove the '@'
filename = prompt.split(" ")[0]
try:
with open(filename, "r") as f:
content = f.read()
return "'''%s'''\n\n%s" % (content, prompt)
except:
print(f"File '{filename}' not found.")
return prompt
def msg(role: str, content: str) -> dict:
return {"role": role, "content": content}
class Terminal:
def __init__(self, inference: Inference, systemmessage: dict):
self.inference = inference
self.messages:list[dict] = [systemmessage]
# these are meant to be overwritten by better ones
self.roleflip = msg("system", "keep going.")
self.summarize = msg("system", "summarize conversation")
self.summarize_user = msg("system", "please summarize conversation")
self.title_prompt = msg("system", "create a title for this conversation")
def append_generate_chat(self, input_text: str, role="user"):
t_start = time.time()
# generate AI response
if input_text != None:
self.messages.append({"role": role, "content": input_text})
inputs = self.inference.tokenize(self.messages, tokenize=True)
number_of_input_tokens = inputs.shape[1]
outputs, out_text = self.inference.generate(inputs)
# append result to message history
self.messages.append({"role": "assistant", "content": out_text})
print("")
time_taken = time.time() - t_start
number_of_tokens = len(outputs[0])
tokens_per_second = (number_of_tokens - number_of_input_tokens) / time_taken
print("generation took %.3fs (%d tokens, %.3f t/s)" % (time_taken, number_of_tokens, tokens_per_second))
# handle tool call and check if a tool call has happened.
tool_result = parse_and_execute_tool_call(out_text, tool_list)
if tool_result != None:
# tool call happened
tool_result = "<tool_response>%s</tool_response>" % tool_result
# depending on the chat template the tool response tags must or must not be passed. :(
self.append_generate_chat(tool_result, role="tool")
def join(self):
while True:
# print an input prompt to receive text or commands
input_text = input(">>> ")
print("")
input_text = check_append_file(input_text)
if input_text.startswith("!"):
self.append_generate_chat("<tool_response>%s</tool_response>" % input_text[1:], role="tool")
# append_generate_chat("%s" % input_text[1:], role="tool") # depending on the chat template the tool response tags must or must not be passed. :(
elif input_text.startswith("/clear"):
print("clearing chat history")
start_msg = self.messages[0]
self.message = [start_msg]
print("")
elif input_text.startswith("/history"):
history = self.inference.tokenize(self.message, tokenize=False)
# history = tokenizer.apply_chat_template(self.message, return_tensors="pt", tokenize=False, add_generation_prompt=False)
print(history)
elif input_text.startswith("/undo"):
if len(self.message) > 2:
print("undo latest prompt")
self.message = self.message[:-2]
else:
print("cannot undo because there are not enough self.message on history.")
print("")
elif input_text.startswith("/regen"):
if len(self.message) >= 2:
print("regenerating message (not working)")
self.message = self.message[:-1]
seed = random.randint(0, 2**32 - 1) # Generate a random seed
torch_reseed(seed)
self.append_generate_chat(None)
else:
print("cannot regenerate because there are not enough self.message on history.")
print("")
elif input_text.startswith("/more"):
self.append_generate_chat(None)
elif input_text.startswith("/file"):
filename = input_text[len("/file "):]
print("read '%s' for prompt:" % filename)
with open(filename, "r") as f:
content = f.read()
print(content)
self.append_generate_chat(content)
elif input_text.startswith("/auto"):
message_backup = self.message
self.message = [self.roleflip]
for m in self.message_backup:
role = m["role"]
content = m["content"]
if role == "user":
role = "assistant"
elif role == "assistant":
role = "user"
if role != "system":
self.message.append({"role": role, "content": content})
self.append_generate_chat(None) # will automatically advance the conversation as 'user'
last_message = self.messages[-1]
last_message["role"] = "user"
self.messages = message_backup + [last_message]
self.append_generate_chat(None) # 'regular' chatbot answer
elif input_text.startswith("/summarize"):
messages_temp = list(filter(lambda x: x["role"] != "system", self.messages))
messages_temp = [self.summarize] + messages_temp + [self.summarize_user] # copy dict in last instance
# messages_temp[-1]["role"] = "user"
input_ids = self.inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ")
generated_tokens, full_output = self.inference.generate(input_ids)
elif input_text.startswith("/title"):
messages_temp = list(filter(lambda x: x["role"] != "system", self.messages))
messages_temp = [self.title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance
messages_temp[-1]["role"] = "user"
input_ids = self.inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ")
generated_tokens, full_output = self.inference.generate(input_ids)
elif input_text.startswith("/save"):
with open("messages.json", "w") as f:
json.dump(self.messages, f, indent=4)
elif input_text.startswith("/load"):
with open("messages.json", "r") as f:
new_messages = json.load(f)
messages = [self.messages[0]] + new_messages[1:]
elif input_text.startswith("/help"):
print("!<prompt> answer as 'tool' in <tool_response> tags")
print("/clear clear chat history")
print("/undo undo latest prompt")
print("/regen regenerate the last message")
print("/more generate more additional information")
print("/file read prompt input from file")
print("/auto automatically advance conversation")
print("/summarize generate a summary of the chat")
print("/title generate a title of the chat")
print("/save write chat history to file")
print("/load load previously saved history")
print("/help print this message")
print("")
elif input_text.startswith("/"):
print("unknown command.")
else:
self.append_generate_chat(input_text)

79
inference.py

@ -17,41 +17,49 @@ import time
import utils import utils
import re import re
import os import os
from modelconfig import Modelconfig
torch.set_num_threads(os.cpu_count()) # Adjust this to the number of threads/cores you have torch.set_num_threads(os.cpu_count()) # Adjust this to the number of threads/cores you have
class Inference: class Inference:
def __init__(self): def __init__(self, modelconfig: Modelconfig):
print("loading LLM...") print("loading LLM '%s'..." % modelconfig.model_name)
t_start = time.time() t_start = time.time()
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub # model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub # model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub
# model_name = "unsloth/phi-4-unsloth-bnb-4bit" #too big
# model_name = "gpt2" # model_name = "gpt2"
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B" # model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2" # model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model # "meta-llama/Llama-2-7b-hf" # Replace with your chosen model
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode # quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True, # load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance # bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving # bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation # bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
) # )
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True) # quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True)
# Load the model with quantization (optional) # Load the model with quantization (optional)
self.model = AutoModelForCausalLM.from_pretrained( if modelconfig.bits_and_bytes_config != None:
model_name, self.model = AutoModelForCausalLM.from_pretrained(
# device_map="auto", # Automatically places parts of the model on GPU/CPU modelconfig.model_name,
# device_map="cuda", # Automatically places parts of the model on GPU/CPU # device_map="auto", # Automatically places parts of the model on GPU/CPU
device_map="cuda", # Automatically places parts of the model on GPU/CPU # device_map="cuda", # Automatically places parts of the model on GPU/CPU
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed device_map="cuda", # Automatically places parts of the model on GPU/CPU
quantization_config=quantization_config_8bit # load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed
) quantization_config=modelconfig.bits_and_bytes_config
)
else:
self.model = AutoModelForCausalLM.from_pretrained(
modelconfig.model_name,
device_map="cuda",
)
# print("apply optimization") # print("apply optimization")
# self.model.generation_config.cache_implementation = "static" # self.model.generation_config.cache_implementation = "static"
@ -59,25 +67,25 @@ class Inference:
# Load tokenizer # Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(modelconfig.model_name)
print("load took %.3fs" % (time.time() - t_start)) print("load took %.3fs" % (time.time() - t_start))
max_context_length = self.model.config.max_position_embeddings self.max_context_length = self.model.config.max_position_embeddings
self.tokenizer.chat_template = utils.load_json_file("chat_template.json") self.tokenizer.chat_template = utils.load_json_file("chat_template.json")
print("max_context_length is %d tokens." % (max_context_length)) print("max_context_length is %d tokens." % (self.max_context_length))
def generate(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: def generate(self, input_ids: torch.Tensor, print_stdout=True) -> tuple[torch.Tensor, str]:
with torch.inference_mode(): with torch.inference_mode():
with torch.no_grad(): with torch.no_grad():
return self.generate_incremental_2(input_ids) return self.generate_incremental_2(input_ids, print_stdout)
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: def generate_batch(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
outputs = self.model.generate( outputs = self.model.generate(
input_ids, # **inputs, inputs["input_ids"] input_ids, # **inputs, inputs["input_ids"]
max_new_tokens=500, # max_length=max_context_length, max_new_tokens=500, # max_length=max_context_length,
@ -90,11 +98,12 @@ class Inference:
# skip all input tokens and only output the additional generated part of the conversation # skip all input tokens and only output the additional generated part of the conversation
input_token_count = len(input_ids[0]) input_token_count = len(input_ids[0])
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True) out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True)
print(out_text) if print_stdout:
print(out_text)
return outputs, out_text return outputs, out_text
def generate_incremental_2(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: def generate_incremental_2(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
generated_tokens = input_ids generated_tokens = input_ids
past_key_values = DynamicCache() past_key_values = DynamicCache()
@ -126,12 +135,14 @@ class Inference:
# Decode and print the newly generated token (skip special tokens) # Decode and print the newly generated token (skip special tokens)
# out_text = self.tokenizer.decode(next_token, skip_special_tokens=True) # out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
out_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True) out_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline if print_stdout:
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token # Check if the generated token is the end-of-sequence token
# if next_token.item() == self.tokenizer.eos_token_id: # if next_token.item() == self.tokenizer.eos_token_id:
if new_tokens[-1].item() == self.tokenizer.eos_token_id: if new_tokens[-1].item() == self.tokenizer.eos_token_id:
print("") if print_stdout:
print("")
break break
# n += 1 # n += 1
@ -150,12 +161,12 @@ class Inference:
return generated_tokens, full_output return generated_tokens, full_output
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: def generate_incremental(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
with torch.inference_mode(): with torch.inference_mode():
return self._generate_incremental(input_ids) return self._generate_incremental(input_ids, print_stdout)
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: def _generate_incremental(self, input_ids: torch.Tensor, print_stdout:bool=True) -> tuple[torch.Tensor, str]:
# Start with the initial input tokens # Start with the initial input tokens
generated_tokens = input_ids # Initially, this is just the input tokens generated_tokens = input_ids # Initially, this is just the input tokens
@ -183,11 +194,13 @@ class Inference:
# Decode and print the newly generated token (skip special tokens) # Decode and print the newly generated token (skip special tokens)
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True) out_text = self.tokenizer.decode(next_token, skip_special_tokens=True)
print(out_text, end="", flush=True) # Print without newline if print_stdout:
print(out_text, end="", flush=True) # Print without newline
# Check if the generated token is the end-of-sequence token # Check if the generated token is the end-of-sequence token
if next_token.item() == self.tokenizer.eos_token_id: if next_token.item() == self.tokenizer.eos_token_id:
print("") if print_stdout:
print("")
break break
n += 1 n += 1

76
inference_profile_test.py

@ -0,0 +1,76 @@
from inference import Inference
from modelconfig import Modelconfig
import time
import nvidia_smi
import torch
import gc
def empty_cuda():
while True:
gc.collect()
torch.cuda.empty_cache()
time.sleep(0.5)
vram = nvidia_smi.get_gpu_stats()["memory_used"]
print("vram: %d MB" % vram)
if vram < 200:
return
def profile_ex(model_conf: Modelconfig):
print("")
empty_cuda()
messages = [
{"role": "system", "content": "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user."},
{"role": "user", "content": "How do astronomers determine the original wavelength of light emitted by a celestial body at rest, which is necessary for measuring its speed using the Doppler effect?"},
]
gpu_stats_before = nvidia_smi.get_gpu_stats()
inference = Inference(model_conf)
gpu_stats_loaded = nvidia_smi.get_gpu_stats()
t_start = time.time()
input_ids = inference.tokenize(messages, tokenize=True)
generated_tokens, full_output = inference.generate_batch(input_ids, print_stdout=False)
t_end = time.time()
gpu_stats_after = nvidia_smi.get_gpu_stats()
took = t_end - t_start
tokens = len(generated_tokens[0])
tokens_per = tokens / took
vram_bulk = gpu_stats_loaded["memory_used"] - gpu_stats_before["memory_used"]
vram_top = gpu_stats_after["memory_used"] - gpu_stats_loaded["memory_used"]
print("model: %s" % model_conf.model_name)
print("tokens: %d tk" % tokens)
print("time: %.3f s" % took)
print("speed: %.3f tk/s" % tokens_per)
print("vram_bulk: %d MB" % vram_bulk)
print("vram_top: %d MB" % vram_top)
print("context: %d tk" % inference.max_context_length)
print("")
def profile(model_conf):
try:
profile_ex(model_conf)
except Exception as e:
print("exception: " + str(e))
pass
def main():
profile(Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True))
profile(Modelconfig("unsloth/Llama-3.2-1B"))
profile(Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True))
profile(Modelconfig("unsloth/llama-3-8b-bnb-4bit"))
# profile(Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True))
profile(Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit"))
profile(Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit"))
profile(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True))
profile(Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True))
profile(Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit"))
if __name__ == "__main__":
main()

188
llama.py

@ -1,175 +1,43 @@
import time
import random from tool_helper import tool_list
from tool_helper import tool_list, parse_and_execute_tool_call
from tool_functions import register_dummy from tool_functions import register_dummy
from inference import Inference, torch_reseed from inference import Inference
import datetime import datetime
import model_selection
from generation_loop import Terminal, msg
messages = []
inference = None
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions
systemmessage = "Hold a casual conversation with the user. Keep responses short at max 3 sentences. Answer using markdown to the user."
# system message for role flip so the model automatically answers for the user
roleflip = {"role": "system", "content": "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye."}
# system messages and user message to bring the model to summarize the entire conversation
summarize = {"role": "system", "content": "Summarize the conversation as a single, cohesive paragraph. Avoid using any bullet points, numbers, or list formatting. Write in plain text with natural sentences that flow together seamlessly."}
summarize_user = {"role": "system", "content": "Can you summarize the conversation?"}
# system message to create a conversation title
title_prompt = {"role": "system", "content": "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity."}
register_dummy() register_dummy()
def initialize_config(inference: Inference) -> Terminal:
# systemmessage at the very begin of the chat. Will be concatenated with the automatic tool usage descriptions
def append_generate_chat(input_text: str, role="user"): system_prompt = "Hold a casual conversation with the user. Keep responses short at max 5 sentences and on point. Answer using markdown to the user. When providing code examples, avoid comments which provide no additional information."
t_start = time.time()
# generate AI response
if input_text != None:
messages.append({"role": role, "content": input_text})
inputs = inference.tokenize(messages, tokenize=True)
outputs, out_text = inference.generate(inputs)
# append result to message history
messages.append({"role": "assistant", "content": out_text})
print("")
print("generation took %.3fs (%d tokens)" % (time.time() - t_start, len(outputs[0])))
# handle tool call and check if a tool call has happened.
tool_result = parse_and_execute_tool_call(out_text, tool_list)
if tool_result != None:
# tool call happened
tool_result = "<tool_response>%s</tool_response>" % tool_result
# depending on the chat template the tool response tags must or must not be passed. :(
append_generate_chat(tool_result, role="tool")
def main():
global messages
global inference
inference = Inference()
current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.") current_date_and_time = datetime.datetime.now().strftime("Current date is %Y-%m-%d and its %H:%M %p right now.")
messages = [{"role": "system", "content": systemmessage + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list)}] append_toolcalls = False
if append_toolcalls:
while True: systemmessage = msg("system", system_prompt + "\n" + current_date_and_time + "\n" + inference.generate_tool_use_header(tool_list))
# print an input prompt to receive text or commands else:
input_text = input(">>> ") systemmessage = msg("system", system_prompt + "\n" + current_date_and_time)
print("")
if input_text.startswith("!"):
append_generate_chat("<tool_response>%s</tool_response>" % input_text[1:], role="tool")
# append_generate_chat("%s" % input_text[1:], role="tool") # depending on the chat template the tool response tags must or must not be passed. :(
elif input_text.startswith("/clear"):
print("clearing chat history")
start_msg = messages[0]
messages = [start_msg]
print("")
elif input_text.startswith("/history"):
history = inference.tokenize(messages, tokenize=False)
# history = tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False)
print(history)
elif input_text.startswith("/undo"):
if len(messages) > 2:
print("undo latest prompt")
messages = messages[:-2]
else:
print("cannot undo because there are not enough messages on history.")
print("")
elif input_text.startswith("/regen"):
if len(messages) >= 2:
print("regenerating message (not working)")
messages = messages[:-1]
seed = random.randint(0, 2**32 - 1) # Generate a random seed
torch_reseed(seed)
append_generate_chat(None)
else:
print("cannot regenerate because there are not enough messages on history.")
print("")
elif input_text.startswith("/more"):
append_generate_chat(None)
elif input_text.startswith("/file"):
filename = input_text[len("/file "):]
print("read '%s' for prompt:" % filename)
with open(filename, "r") as f:
content = f.read()
print(content)
append_generate_chat(content)
elif input_text.startswith("/auto"):
messages_backup = messages
messages = [roleflip]
for m in messages_backup:
role = m["role"]
content = m["content"]
if role == "user":
role = "assistant"
elif role == "assistant":
role = "user"
if role != "system":
messages.append({"role": role, "content": content})
append_generate_chat(None) # will automatically advance the conversation as 'user'
last_message = messages[-1]
last_message["role"] = "user"
messages = messages_backup + [last_message]
append_generate_chat(None) # 'regular' chatbot answer
elif input_text.startswith("/summarize"):
messages_temp = list(filter(lambda x: x["role"] != "system", messages))
messages_temp = [summarize] + messages_temp + [summarize_user] # copy dict in last instance
# messages_temp[-1]["role"] = "user"
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="The conversation was about ")
generated_tokens, full_output = inference.generate(input_ids)
elif input_text.startswith("/title"):
messages_temp = list(filter(lambda x: x["role"] != "system", messages))
messages_temp = [title_prompt] + messages_temp #+ [dict(title)] # copy dict in last instance
messages_temp[-1]["role"] = "user"
input_ids = inference.tokenize(messages_temp, tokenize=True, assistant_prefix="Title: ")
generated_tokens, full_output = inference.generate(input_ids)
elif input_text.startswith("/help"):
print("!<prompt> answer as 'tool' in <tool_response> tags")
print("/clear clear chat history")
print("/undo undo latest prompt")
print("/regen regenerate the last message")
print("/more generate more additional information")
print("/file read prompt input from file")
print("/auto automatically advance conversation")
print("/summarize generate a summary of the chat")
print("/title generate a title of the chat")
print("/help print this message")
print("")
elif input_text.startswith("/"): terminal = Terminal(inference, systemmessage)
print("unknown command.")
else: # system message for role flip so the model automatically answers for the user
append_generate_chat(input_text) terminal.roleflip = msg("system", "Keep the conversation going, ask for more information on the subject. Keep messages short at max 1-2 sentences. Do not thank and say goodbye.")
# system messages and user message to bring the model to summarize the entire conversation
terminal.summarize = msg("system", "Summarize the conversation as a single, cohesive paragraph. Avoid using any bullet points, numbers, or list formatting. Write in plain text with natural sentences that flow together seamlessly.")
terminal.summarize_user = msg("system", "Can you summarize the conversation?")
# system message to create a conversation title
terminal.title_prompt = msg("system", "Please create a very short and descriptive title or label for this conversation. Maximum 2-5 words. Use only plain text, avoid numbering, special characters, or unnecessary formatting-focus on clarity and brevity.")
return terminal
if __name__ == "__main__": if __name__ == "__main__":
main()
inference = Inference(model_selection.get_model())
terminal = initialize_config(inference)
terminal.join()

95
model_selection.py

@ -0,0 +1,95 @@
from modelconfig import Modelconfig
def get_model() -> Modelconfig:
# model: NousResearch/Hermes-3-Llama-3.2-3B
# tokens: 315 tk
# time: 94.360 s
# speed: 3.338 tk/s
# vram_bulk: 3622 MB
# vram_top: 80 MB
# context: 131072 tk
# model = Modelconfig("NousResearch/Hermes-3-Llama-3.2-3B", load_in_8bit=True)
# model: unsloth/Llama-3.2-1B
# tokens: 589 tk
# time: 39.348 s
# speed: 14.969 tk/s
# vram_bulk: 4708 MB
# vram_top: 102 MB
# context: 131072 tk
# model = Modelconfig("unsloth/Llama-3.2-1B") # note, fast, but talks to itself. basically does not work.
# model: unsloth/Llama-3.2-3B-Instruct
# tokens: 285 tk
# time: 75.363 s
# speed: 3.782 tk/s
# vram_bulk: 3512 MB
# vram_top: 48 MB
# context: 131072 tk
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct", load_in_8bit=True)
# model: unsloth/llama-3-8b-bnb-4bit
# tokens: 435 tk
# time: 84.314 s
# speed: 5.159 tk/s
# vram_bulk: 5440 MB
# vram_top: 216 MB
# context: 8192 tk
# model = Modelconfig("unsloth/llama-3-8b-bnb-4bit")
# Model size: 3.21B params
# vram used: xxxxx MB
# speed xxxxx t/s
# working: DOES NOT LOAD
# model = Modelconfig("unsloth/Llama-3.2-3B-Instruct-GGUF", load_in_8bit=True)
# model: unsloth/gemma-2-9b-it-bnb-4bit
# tokens: 154 tk
# time: 32.727 s
# speed: 4.706 tk/s
# vram_bulk: 6156 MB
# vram_top: 232 MB
# context: 8192 tk
# model = Modelconfig("unsloth/gemma-2-9b-it-bnb-4bit")
# model: unsloth/Qwen2.5-7B-Instruct-bnb-4bit
# tokens: 120 tk
# time: 12.248 s
# speed: 9.798 tk/s
# vram_bulk: 5382 MB
# vram_top: 170 MB
# context: 32768 tk
model = Modelconfig("unsloth/Qwen2.5-7B-Instruct-bnb-4bit") # note, this works really good
# model: unsloth/Qwen2.5-3B-Instruct
# tokens: 112 tk
# time: 12.703 s
# speed: 8.816 tk/s
# vram_bulk: 2108 MB
# vram_top: 98 MB
# context: 32768 tk
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_4bit=True)
# model: unsloth/Qwen2.5-3B-Instruct
# tokens: 118 tk
# time: 33.748 s
# speed: 3.497 tk/s
# vram_bulk: 3310 MB
# vram_top: 60 MB
# context: 32768 tk
# model = Modelconfig("unsloth/Qwen2.5-3B-Instruct", load_in_8bit=True)
# Model size: 3.87B params
# vram used: xxxxx MB
# speed xxxxx t/s
# error: requires the protobuf library but it was not found in your environment
# model = Modelconfig("unsloth/mistral-7b-instruct-v0.3-bnb-4bit")
return model

20
modelconfig.py

@ -0,0 +1,20 @@
from transformers import BitsAndBytesConfig
import torch
class Modelconfig:
def __init__(self, model_name, bits_and_bytes_config=None, load_in_8bit=False, load_in_4bit=False):
self.model_name = model_name
if load_in_4bit:
assert bits_and_bytes_config == None
self.bits_and_bytes_config = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Recommended for better performance
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation
)
elif load_in_8bit:
assert bits_and_bytes_config == None
self.bits_and_bytes_config = BitsAndBytesConfig(load_in_8bit=True)
else:
self.bits_and_bytes_config = bits_and_bytes_config

3
requirements.txt

@ -1,3 +1,4 @@
transformers transformers
accelerate accelerate
bitsandbytes bitsandbytes
pytest
Loading…
Cancel
Save