commit
f46ac3a4c1
3 changed files with 43 additions and 0 deletions
@ -0,0 +1,2 @@ |
|||||
|
/model/* |
||||
|
*.prof |
@ -0,0 +1,38 @@ |
|||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
||||
|
import time |
||||
|
|
||||
|
t_start = time.time() |
||||
|
|
||||
|
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub |
||||
|
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub |
||||
|
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model |
||||
|
|
||||
|
# Load the model with quantization (optional) |
||||
|
model = AutoModelForCausalLM.from_pretrained( |
||||
|
model_name, |
||||
|
# device_map="auto", # Automatically places parts of the model on GPU/CPU |
||||
|
device_map="cpu", # Automatically places parts of the model on GPU/CPU |
||||
|
load_in_8bit=False, # Enables 8-bit quantization if bitsandbytes is installed |
||||
|
) |
||||
|
|
||||
|
# Load tokenizer |
||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
||||
|
|
||||
|
print("load took %.3fs" % (time.time() - t_start)) |
||||
|
t_start = time.time() |
||||
|
|
||||
|
# Generate text |
||||
|
input_text = "Hello, who are you?" |
||||
|
inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # .to("cuda") .to("cpu") |
||||
|
outputs = model.generate( |
||||
|
inputs["input_ids"], |
||||
|
# max_length=200, |
||||
|
pad_token_id=tokenizer.pad_token_id, |
||||
|
eos_token_id=tokenizer.eos_token_id |
||||
|
) |
||||
|
|
||||
|
# Decode and print result |
||||
|
print(tokenizer.decode(outputs[0], skip_special_tokens=False)) |
||||
|
|
||||
|
print("genaration took %.3fs" % (time.time() - t_start)) |
||||
|
t_start = time.time() |
@ -0,0 +1,3 @@ |
|||||
|
transformers |
||||
|
accelerate |
||||
|
bitsandbytes |
Loading…
Reference in new issue