2 changed files with 258 additions and 99 deletions
@ -0,0 +1,148 @@ |
|||||
|
if __name__ == "__main__": |
||||
|
# this message is at the start, because initializing torch/transformers takes lots of time. fail fast. |
||||
|
raise Exception("cannot execute this file directly") |
||||
|
|
||||
|
|
||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
||||
|
import torch |
||||
|
import time |
||||
|
import utils |
||||
|
import re |
||||
|
|
||||
|
|
||||
|
|
||||
|
class Inference: |
||||
|
def __init__(self): |
||||
|
print("loading LLM...") |
||||
|
t_start = time.time() |
||||
|
|
||||
|
# model_name = "NousResearch/Llama-2-7b-hf" # will cache on C:\Users\ftobler\.cache\huggingface\hub |
||||
|
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # will cache on C:\Users\ftobler\.cache\huggingface\hub |
||||
|
# model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B" |
||||
|
# model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2" |
||||
|
# "meta-llama/Llama-2-7b-hf" # Replace with your chosen model |
||||
|
|
||||
|
|
||||
|
quantization_config_4bit = BitsAndBytesConfig( # tool calls don't really work in 4 bit mode |
||||
|
load_in_4bit=True, |
||||
|
bnb_4bit_quant_type="nf4", # Recommended for better performance |
||||
|
bnb_4bit_use_double_quant=True, # Optional: Further quantization for more memory saving |
||||
|
bnb_4bit_compute_dtype=torch.bfloat16 # Use bfloat16 for computation |
||||
|
) |
||||
|
|
||||
|
quantization_config_8bit = BitsAndBytesConfig(load_in_8bit=True) |
||||
|
|
||||
|
# Load the model with quantization (optional) |
||||
|
self.model = AutoModelForCausalLM.from_pretrained( |
||||
|
model_name, |
||||
|
# device_map="auto", # Automatically places parts of the model on GPU/CPU |
||||
|
# device_map="cuda", # Automatically places parts of the model on GPU/CPU |
||||
|
device_map="cuda", # Automatically places parts of the model on GPU/CPU |
||||
|
# load_in_8bit=True, # Enables 8-bit quantization if bitsandbytes is installed |
||||
|
quantization_config=quantization_config_8bit |
||||
|
) |
||||
|
|
||||
|
# Load tokenizer |
||||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
||||
|
|
||||
|
print("load took %.3fs" % (time.time() - t_start)) |
||||
|
|
||||
|
max_context_length = self.model.config.max_position_embeddings |
||||
|
|
||||
|
|
||||
|
self.tokenizer.chat_template = utils.load_json_file("chat_template.json") |
||||
|
|
||||
|
print("max_context_length is %d tokens." % (max_context_length)) |
||||
|
|
||||
|
|
||||
|
def generate_batch(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: |
||||
|
outputs = self.model.generate( |
||||
|
input_ids, # **inputs, inputs["input_ids"] |
||||
|
max_new_tokens=500, # max_length=max_context_length, |
||||
|
pad_token_id=self.tokenizer.pad_token_id, |
||||
|
eos_token_id=self.tokenizer.eos_token_id, |
||||
|
do_sample=True, |
||||
|
num_return_sequences=1 |
||||
|
) |
||||
|
# skip all input tokens and only output the additional generated part of the conversation |
||||
|
input_token_count = len(input_ids[0]) |
||||
|
out_text = self.tokenizer.decode(outputs[0][input_token_count:], skip_special_tokens=True) |
||||
|
print(out_text) |
||||
|
return outputs, out_text |
||||
|
|
||||
|
|
||||
|
|
||||
|
def generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: |
||||
|
with torch.inference_mode(): |
||||
|
return self._generate_incremental(input_ids) |
||||
|
|
||||
|
|
||||
|
def _generate_incremental(self, input_ids: torch.Tensor) -> tuple[torch.Tensor, str]: |
||||
|
# Start with the initial input tokens |
||||
|
generated_tokens = input_ids # Initially, this is just the input tokens |
||||
|
|
||||
|
n = 0 |
||||
|
try: |
||||
|
|
||||
|
# Loop to generate one token at a time |
||||
|
while True: |
||||
|
# Call the model with the current tokens |
||||
|
outputs = self.model(input_ids=generated_tokens, use_cache=True) |
||||
|
|
||||
|
# Get the next token (the last token from the generated sequence) |
||||
|
next_token = outputs.logits.argmax(dim=-1)[:, -1] |
||||
|
|
||||
|
# Append the new token to the sequence |
||||
|
generated_tokens = torch.cat([generated_tokens, next_token.unsqueeze(0)], dim=1) |
||||
|
|
||||
|
# Decode and print the newly generated token (skip special tokens) |
||||
|
out_text = self.tokenizer.decode(next_token, skip_special_tokens=True) |
||||
|
print(out_text, end="", flush=True) # Print without newline |
||||
|
|
||||
|
# Check if the generated token is the end-of-sequence token |
||||
|
if next_token.item() == self.tokenizer.eos_token_id: |
||||
|
print("") |
||||
|
break |
||||
|
|
||||
|
n += 1 |
||||
|
if n >= 15: |
||||
|
n = 0 |
||||
|
torch.cuda.empty_cache() |
||||
|
|
||||
|
except KeyboardInterrupt: |
||||
|
pass |
||||
|
|
||||
|
# Once done, return the full generated sequence |
||||
|
input_token_count = len(input_ids[0]) |
||||
|
full_output = self.tokenizer.decode(generated_tokens[0][input_token_count:], skip_special_tokens=True) |
||||
|
|
||||
|
torch.cuda.empty_cache() |
||||
|
|
||||
|
return generated_tokens, full_output |
||||
|
|
||||
|
|
||||
|
def tokenize(self, messages: list[dict], tokenize: bool) -> str | torch.Tensor: |
||||
|
if tokenize: |
||||
|
inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=True, return_dict=True, add_generation_prompt=True) #continue_final_message=True, |
||||
|
inputs = {key: value.to(self.model.device) for key, value in inputs.items()} |
||||
|
return inputs["input_ids"] |
||||
|
else: |
||||
|
message = self.tokenizer.apply_chat_template(messages, return_tensors="pt", tokenize=False, add_generation_prompt=False) |
||||
|
return message |
||||
|
|
||||
|
|
||||
|
def generate_tool_use_header(self, tools: list[callable]) -> str: |
||||
|
temp_messages = [{}] # for some reason an empty array is not allowed but a {} inside works like an empty array. |
||||
|
s = self.tokenizer.apply_chat_template(temp_messages, return_tensors="pt", tokenize=False, add_generation_prompt=False, tools=tools) |
||||
|
pattern = r"<\|im_start\|>system\n(.*)<\|im_end\|>" |
||||
|
match = re.search(pattern, s, re.DOTALL) |
||||
|
if not match: |
||||
|
raise Exception("Failed to regex match the template tool system text.") |
||||
|
extraction = match.group(1) |
||||
|
return extraction |
||||
|
|
||||
|
|
||||
|
def torch_reseed(seed: int): |
||||
|
torch.manual_seed(seed) |
||||
|
torch.cuda.manual_seed_all(seed) |
||||
|
|
Loading…
Reference in new issue